Etude de Dangers

Ferme éolienne de Blanzay 2 - Energie Département de la Vienne (86) Communes de Blanzay, Champniers et Savigné

VOLKSWIND

Volkswind France SAS

SAS au capital de 250 000€

R.C.S PARIS 439 906 934

Centre Régional de Limoges

Aéroport de Limoges Bellegarde

87100 LIMOGES

05 55 48 38 97

Historique des versions

Date de la version	Etabli par	Relu par :	Commentaire :	Nature des modifications :
22 /12 / 2022	Hemery Julie	Antoine HOSTE	Dépôt	

Table des matières

1.	Pr	éambule	10
	1.1.	Objectif de l'étude de dangers	10
	1.2.	Contexte législatif et réglementaire	10
	1.3.	Nomenclature des installations classées	12
2.	In	formations générales concernant l'installation	13
	2.1.	Renseignements administratifs	13
	2.2.	Localisation du site	13
	2.3.	Définition de l'aire d'étude	16
3.	De	escription de l'environnement de l'installation	18
	3.1.	Environnement humain	18
	3.1.1.	Zones urbanisées	18
	3.1.2.	Etablissements recevant du public (ERP)	21
	3.1.3.	Installations classées pour la protection de l'environnement (ICPE) et installations nuclé	aires
	de bas	se (INB)	21
	3.1.4.	Autres activités	21
	3.2.	Environnement naturel	22
	3.2.1.	Contexte climatique	22
	3.2.2.	Risques naturels	26
	3.3.	Environnement matériel	35
	3.3.1.	Voies de communication	35
	3.3.2.	Réseaux publics et privés	37
	3.4.	Cartographie de synthèse	39
4.	De	escription de l'installation	47
	4.1.	Caractéristiques de l'installation	47
	4.1.1.	Activité de l'installation	47
	4.1.2.	Composition de l'installation	47
	4.2.	Fonctionnement de l'installation	67
	4.2.1.	Principe de fonctionnement d'un aérogénérateur	67
	4.2.2.	Sécurité de l'installation	71
	4.2.3.	Opérations de maintenance de l'installation	73
	4.2.4.	Stockage et flux de produits dangereux	79
	4.2.5.	Procédure en cas d'incident	79
	4.3.	Fonctionnement des réseaux de l'installation	83

	4.3.1.	Raccordement électrique	83	
	4.3.2.	Autres réseaux	83	
5.	Id	entification des potentiels de dangers de l'installation	•••••	84
	5.1.	Potentiels de dangers liés aux produits		84
	5.1.1.	Inventaire des produits	84	
	5.1.2.	Dangers des produits	85	
	5.2.	Potentiels de dangers liés au fonctionnement de l'installation	•••••	85
	5.3.	Réduction des potentiels de dangers à la source	•••••	86
	5.3.1.	Principales actions préventives	86	
	5.3.2.	Réduction des potentiels de dangers liés aux produits	87	
	5.3.3.	Utilisation des meilleures techniques disponibles	88	
6.	A	nalyse des retours d'expérience	•••••	89
	6.1.	Inventaire des accidents et incidents en France	••••••	89
	6.2.	Inventaire des accidents et incidents à l'international	••••••	92
	6.3.	Inventaire des accidents majeurs survenus sur les sites de l'exploitant		94
	6.4.	Synthèse des phénomènes dangereux redoutés issus du retour d'expérience		94
	6.4.1.	Analyse des typologies d'accidents les plus fréquents	94	
	6.4.2.	Analyse des typologies d'accidents les plus fréquents	95	
	6.5.	Limites d'utilisation de l'accidentologie	•••••	95
7.	A	nalyse préliminaire des risques	•••••	96
	7.1.	Objectif de l'analyse préliminaire des risques	•••••	96
	7.2.	Recensement des événements initiateurs exclus de l'analyse des risques		96
	7.3.	Recensement des agressions externes potentielles		97
	7.3.1.	Agressions externes liées aux activités humaines	97	
	7.3.2.	Agressions externes liées aux phénomènes naturels	99	
	7.4.	Scénarios étudiés dans l'analyse préliminaire des risques		99
	7.5.	Effets dominos	••••••	105
	7.6.	Mise en place des mesures de sécurité		105
	7.7.	Conclusion de l'analyse préliminaire des risques		118
8.	Et	ude détaillée des risques	••••••	120
	8.1.	Rappel des définitions		120
	8.1.1.	Cinétique	121	
	8.1.2.	Intensité	121	
	8.1.3.	Gravité	122	
	8.1.4.	Probabilité	122	

	8.2.	Caractérisation des scénarios retenus	12
	8.2.1.	Effondrement de l'éolienne	124
	8.2.2.	Chute de glace	128
	8.2.3.	Chute d'éléments de l'éolienne	131
	8.2.4.	Projection de pales ou de fragments de pales	133
	8.2.5.	Projection de glace	137
	8.3.	ynthèse de l'étude détaillée des risques	14
	8.3.1.	Tableau de synthèse des scénarios étudiés	140
	8.3.2.	Synthèse de l'acceptabilité des risques	141
	8.3.3.	Cartographie des risques	142
9.	Con	clusion	14
10	. Anı	exes	14
A]	NNEXE :	: « Declaration letter » des éoliennes V162 – 6,8 MW	149
A]	NNEXE :	2 : « Type Certificate » des éoliennes N163 – 5,X MW	150
A]	NNEXE :	3 : Attestation de conformité du projet aux règlements d'urbanisme	151
A]	NNEXE	1 : Méthode de comptage des personnes pour la détermination de la gravité potentiell	e d'un
ac	cident à	proximité d'une éolienne	152
A]	NNEXE !	5 : Tableau de l'accidentologie française	155
A]	NNEXE (s : Scénarios génériques issus de l'analyse préliminaires des risques	183
A]	NNEXE !	' : Probabilité d'atteinte et risque individuel	188
A]	NNEXE 8	3 : Glossaire	190
A]	NNEXE !	: Bibliographie et références utilisées	194
A]		O T' 1 1 / '1/	105
	NNEXE :	0 : Fiches de sécurité	195
A]		1 : Schéma unifilaire	

Figures

Figure 1 : Rose des vents des stations météorologiques de Poitiers-Biard (86)	25
Figure 2 : Schéma simplifié d'un aérogénérateur	49
Figure 3 : Schéma technique de la nacelle Vestas V162 - 6,8MW	51
Figure 4 : Dessin d'élévation de l'éolienne Vestas V162- 6,8 MW	52
Figure 5 : Dessin d'élévation de l'éolienne Nordex N163- 5,7 MW	52
Figure 6 : Illustration des emprises au sol d'une éolienne	53
Figure 7 : Aires de montage et d'entretien des éoliennes	54
Figure 8 : Schéma de raccordement électrique d'un parc éolien	57
Figure 9 : Exemple de tranchées sous champs labouré	60
Figure 10 : Schéma d'un poste de livraison (5*10m double)	64
Figure 11 : Photographie d'un exemple de balisage aéronautique	65
Figure 12 : Exemple de panneau d'affichage des prescriptions	66
Figure 13 : Procédure en cas d'incident	82
Figure 14 : Répartition des événements accidentels en France	90
Figure 15 : Répartition des causes des incendies en France	91
Figure 16 : Répartition des causes d'effondrement en France	91
Figure 17 : Répartition des causes de chutes / ruptures de pales en France	
Figure 18 : Répartition des événements accidentels dans le monde	93
Figure 19 : Répartition des causes premières d'effondrement	93
Figure 20 : Répartition des causes premières de rupture de pale	93
Figure 21 : Répartition des causes premières d'incendie	94
Figure 22 : Evolution du nombre d'incidents annuels en France et du nombre d'éoliennes installée	
Tableaux	
Tableau 1 : Rubrique 2980 de la nomenclature des installations classées	12
Tableau 2 : Températures mini-maxi et moyennes mensuelles à Civray en °C (Source : Météo Fran	ce) 22
Tableau 3 : Pluviométrie moyenne sur la station de Civray en mm (Source : Météo France)	22
Tableau 4 : Zones de sismicité	28
Tableau 5 : Recensement des séismes ressentis sur la commune de Blanzay	29
Tableau 6 : Recensement des séismes ressentis sur la commune de Champniers	29
Tableau 7 : Recensement des séismes ressentis sur la commune de Savigné	29

Tableau 8 : Arrêtés de reconnaissance de catastrophe naturelle sur la commune de Blanzay	32
Tableau 9 : Arrêtés de reconnaissance de catastrophe naturelle sur la commune de Champniers	32
Tableau 10 : Arrêtés de reconnaissance de catastrophe naturelle sur la commune de Savigné	33
Tableau 11 : Informations relatives aux voies de communication principales comprises dans la	zone
d'étude	35
Tableau 12 : Nombre de personnes exposées sur l'ensemble du périmètre d'étude	39
Tableau 13 : Nombre de personnes exposées sur l'ensemble du périmètre d'étude	40
Tableau 14 : Coordonnées des éoliennes et du poste de livraison	47
Tableau 15 : Résumé des réseaux HTA à créer par tronçon	62
Tableau 16 : Principaux éléments constitutifs des éoliennes V162 et N163	67
Tableau 17 : Opérations d'entretien et de contrôle du matériel	75
Tableau 18 : Potentiels de dangers liés au fonctionnement de l'installation	86
Tableau 19 : Agressions externes liées aux activités humaines	98
Tableau 20 : Agressions externes liées aux phénomènes naturels	99
Tableau 21 : Analyse générique des risques	100
Tableau 22 : Mesures de sécurité pour prévenir la mise en mouvement de l'éolienne lors de la forma	ation
de glacede	107
Tableau 23 : Mesures de sécurité pour prévenir l'atteinte des personnes par la chute de glace	107
Tableau 24 : Mesures de sécurité pour prévenir l'échauffement significatif des pièces mécaniques	108
Tableau 25 : Mesures de sécurité pour prévenir la survitesse	109
Tableau 26 : Mesures de sécurité pour prévenir les courts-circuits	110
Tableau 27 : Mesures de sécurité pour prévenir les effets de la foudre	111
Tableau 28 : Mesures de sécurité pour protéger et intervenir en cas d'incendie	112
Tableau 29 : Mesures de sécurité pour la prévention et la rétention des fuites	114
 Tableau 30 : Mesures de sécurité pour prévenir les défauts de stabilité et d'assemblage de l'éolienne	116
Tableau 31 : Mesures de sécurité pour prévenir les erreurs de maintenance	117
Tableau 32 : Mesures de sécurité pour prévenir la dégradation de l'état des équipements	117
Tableau 33 : Mesures de sécurité pour prévenir les risques de dégradation de l'éolienne en cas de ven	t fort
	118
Tableau 34 : Scénarios exclus	119
Tableau 35 : Niveaux d'intensité	122
Tableau 36 : Niveaux de gravité	122
Tableau 37 : Niveaux de probabilités	123
Tableau 38 : Niveau d'intensité pour le scénario d'effondrement de l'éolienne	125

Tableau 39 : Niveau de gravité pour le scénario d'effondrement de l'éolienne	126
Tableau 40 : Niveau de probabilité pour le scénario d'effondrement de l'éolienne	126
Tableau 41 : Niveau de risque pour le scénario d'effondrement de l'éolienne	128
Tableau 42 : Niveau de d'intensité pour le scénario de chute de glace	129
Tableau 43 : Niveau de gravité pour le scénario de chute de glace	130
Tableau 44 : Niveau de risque pour le scénario de chute de glace	130
Tableau 45 : Niveau d'intensité pour le scénario de chute d'éléments de l'éolienne	131
Tableau 46 : Niveau de gravité pour le scénario de chute d'éléments de l'éolienne	132
Tableau 47 : Niveau de risque pour le scénario de chute d'éléments de l'éolienne	133
Tableau 48 : Niveau d'intensité pour le scénario de projection de pale ou de fragment de pale	134
Tableau 49 : Niveau de gravité pour le scénario de projection de pale ou de fragment de pale	135
Tableau 50 : Niveau de probabilité pour le scénario de projection de pale ou de fragment de pale	136
Tableau 51 : Niveau de risque pour le scénario de projection de pale ou de fragment de pale	137
Tableau 52 : Niveau d'intensité pour le scénario de projection de morceaux de glace	138
Tableau 53 : Niveau de gravité pour le scénario de projection de morceaux de glace	139
Tableau 54 : Niveau de risque pour le scénario de projection de morceaux de glace	140
Tableau 55 : Tableau de synthèse des risques et des paramètres associés pour toutes les éoliennes	140
Tableau 56 : Légende de la matrice de criticité	141
Tableau 57 : Matrice de criticité des différents scénarios	141
Cartes	
Carte 1 : Localisation de la zone de projet à l'échelle régionale	14
Carte 2 : Plan d'ensemble du projet	15
Carte 3 : Localisation de la zone d'étude de dangers	17
Carte 4 : Implantation du projet vis-à-vis du zonage réglementaire de l'urbanisme	19
Carte 5 : Localisation des habitations par rapport au mât des éoliennes	20
Carte 6 : Délimitation des zones favorables à l'éolien en région Poitou-Charentes	23
Carte 7 : Vitesse du vent moyen à 100 m d'altitude en Poitou-Charentes	24
Carte 8 : Carte de France du niveau kéraunique	26
Carte 9 : Zonage sismique de France (source : planseisme.fr)	28
Carte 10 : Risque « retrait gonflement des argiles » (Source : georisques.gouv.fr)	31
Carte 11 : Identification du risque de remontée de nappes sur les communes de Blanzay, Champr	niers et
Savigné (source : georisques.gouv.fr)	34

Carte 12 : Les principales voies de communication dans le périmètre d'étude	36
Carte 13 : Réseaux électriques et de communication	37
Carte 14 : Réseau d'eau à l'intérieur de la zone d'Etude de Dangers	38
Carte 15 : Sentier de randonnée à proximité de la zone d'étude de dangers	41
Carte 16 : Synthèse des cibles et du nombre de personnes exposées pour l'ensemble du parc	42
Carte 17 : Synthèse des cibles et du nombre de personnes exposées pour l'éolienne E01	43
Carte 18 : Synthèse des cibles et du nombre de personnes exposées pour l'éolienne E02	44
Carte 19 : Synthèse des cibles et du nombre de personnes exposées pour l'éolienne E03	45
Carte 20 : Synthèse des cibles et du nombre de personnes exposées pour l'éolienne E04	46
Carte 21 : Implantation du parc éolien	48
Carte 22 : Voies d'accès aux éoliennes - Plan cadastral (en bleu : voie d'accès)	56
Carte 23 : Localisation du poste de livraison et réseau interne du parc éolien	59
Carte 24 : Plan d'installation du poste de livraison	63
Carte 25 : Synthèse des risques pour l'éolienne E01	143
Carte 26 : Synthèse des risques pour l'éolienne E02	144
Carte 27 : Synthèse des risques pour l'éolienne E03	145
Carte 28 : Synthèse des risques pour l'éolienne E04	146

1. Préambule

1.1. Objectif de l'étude de dangers

Cette étude de dangers a pour objet de rendre compte de l'examen effectué pour caractériser, analyser, évaluer, prévenir et réduire les risques de la Ferme éolienne de Blanzay 2 - Energie, autant que technologiquement réalisable et économiquement acceptable, que leurs causes soient intrinsèques aux substances ou matières utilisées, liées aux procédés mis en œuvre ou dues à la proximité d'autres risques d'origine interne ou externe à l'installation.

Elle a été réalisée par l'exploitant de l'installation, sous sa responsabilité et sous le contrôle de l'inspection des installations classées.

Elle est proportionnée aux risques présentés par l'établissement. Le choix de la méthode d'analyse utilisée et la justification des mesures de prévention, de protection et d'intervention sont adaptés à la nature et à la complexité des installations et de leurs risques.

Elle précise l'ensemble des mesures de maîtrise des risques mises en œuvre à l'intérieur de l'établissement, qui réduit le risque à l'intérieur et à l'extérieur de l'établissement à un niveau jugé acceptable par l'exploitant.

Ainsi, cette étude permet une approche rationnelle et objective des risques encourus par les personnes ou l'environnement, en satisfaisant les principaux objectifs suivants :

- Améliorer la réflexion sur la sécurité à l'intérieur de l'entreprise afin de réduire les risques et optimiser la politique de prévention ;
- → Favoriser le dialogue technique avec les autorités d'inspection pour la prise en compte des parades techniques et organisationnelles dans l'arrêté d'autorisation ;

Toutes les distances aux éoliennes indiquées correspondent aux distances au mât des éoliennes.

1.2. <u>Contexte législatif et réglementaire</u>

Les objectifs et le contenu de l'étude de dangers sont définis dans la partie du Code de l'environnement relative aux installations classées. Selon l'article L. 512-1, l'étude de dangers expose les risques que peut présenter l'installation pour les intérêts visés à l'article L. 511-1 en cas d'accident, que la cause soit interne ou externe à l'installation.

L'arrêté du 29 septembre 2005 relatif à l'évaluation et à la prise en compte de la probabilité d'occurrence, de la cinétique, de l'intensité des effets et de la gravité des conséquences des accidents potentiels dans les études de dangers des installations classées soumises à autorisation fournit un cadre méthodologique pour les évaluations des scénarios d'accident majeurs. Il impose une évaluation des accidents majeurs sur les personnes uniquement et non sur la totalité des enjeux identifiés dans l'article L. 511-1. En cohérence avec cette réglementation et dans le

but d'adopter une démarche proportionnée, l'évaluation des accidents majeurs dans l'étude de dangers d'un parc d'aérogénérateurs s'intéressera prioritairement aux dommages sur les personnes. Pour les parcs éoliens, les atteintes à l'environnement, l'impact sur le fonctionnement des radars et les problématiques liées à la circulation aérienne feront l'objet d'une évaluation détaillée au sein de l'étude d'impact.

Ainsi, l'étude de dangers a pour objectif de démontrer la maîtrise du risque par l'exploitant. Elle comporte une analyse des risques qui présente les différents scénarios d'accidents majeurs susceptibles d'intervenir. Ces scénarios sont caractérisés en fonction de leur probabilité d'occurrence, de leur cinétique, de leur intensité et de la gravité des accidents potentiels. Elle justifie que le projet permet d'atteindre, dans des conditions économiquement acceptables, un niveau de risque aussi bas que possible, compte tenu de l'état des connaissances et des pratiques et de la vulnérabilité de l'environnement de l'installation.

Selon le principe de proportionnalité, le contenu de l'étude de dangers doit être en relation avec l'importance des risques engendrés par l'installation, compte tenu de son environnement et de sa vulnérabilité. Ce contenu est défini notamment par les articles L181-25 et D181-15-2 du Code de l'environnement :

- ▲ Description de l'environnement et du voisinage,
- Description des installations et de leur fonctionnement,
- ★ Identification et caractérisation des potentiels de danger,
- ★ Estimation des conséquences de la concrétisation des dangers,
- ★ Réduction des potentiels de danger,
- Les Enseignements tirés du retour d'expérience (des accidents et incidents représentatifs),
- ▲ Analyse préliminaire des risques,
- ★ Etude détaillée de réduction des risques,
- → Quantification et hiérarchisation des différents scénarios en termes de gravité, de probabilité et de cinétique de développement en tenant compte de l'efficacité des mesures de prévention et de protection,
- Représentation cartographique,
- Résumé non technique de l'étude des dangers.

De même, la circulaire du 10 mai 2010 récapitulant les règles méthodologiques applicables aux études de dangers, à l'appréciation de la démarche de réduction du risque à la source et aux plans de prévention des risques technologiques (PPRT) dans les installations classées en application de la loi du 30 juillet 2003 précise le contenu attendu de l'étude de dangers et apporte des éléments d'appréciation des dangers pour les installations classées soumises à autorisation.

Enfin, les principaux risques sont générés au cours de la phase d'exploitation, c'est pourquoi l'étude de dangers concerne principalement cette phase.

1.3. <u>Nomenclature des installations classées</u>

Conformément à l'article R. 511-9 du Code de l'environnement, modifié par le décret n°2011-984 du 23 août 2011, les parcs éoliens sont soumis à la rubrique 2980 de la nomenclature des installations classées :

Tableau 1 : Rubrique 2980 de la nomenclature des installations classées

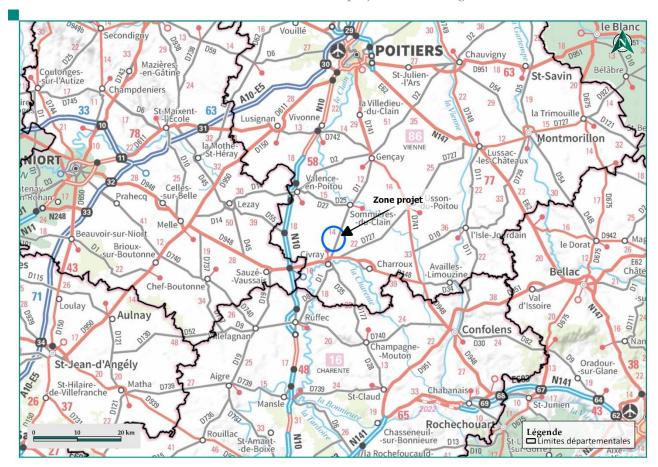
A Nomenclature des installations classées										
N°	DÉSIGNATION DE LA RUBRIQUE	A, E, D, S, C (1)	RAYON (2)							
2980	Installation terrestre de production d'électricité à partir de l'énergie mécanique du vent et regroupant un ou plusieurs aérogénérateurs: 1. Comprenant au moins un aérogénérateur dont le mât a une hauteur supérieure ou égale à 50 m 2. Comprenant uniquement des aérogénérateurs dont le mât a une hauteur inférieure à 50 m et au moins un aérogénérateur dont le mât a une hauteur maximale supérieure ou égale à 12 m et pour une puissance totale installée: a) Supérieure ou égale à 20 MW	A A D	6							

⁽¹⁾ A : autorisation, E : enregistrement, D : déclaration, S : servitude d'utilité publique, C : soumis au contrôle périodique prévu par l'article L. 512-11 du code de l'environnement.
(2) Rayon d'affichage en kilomètres.

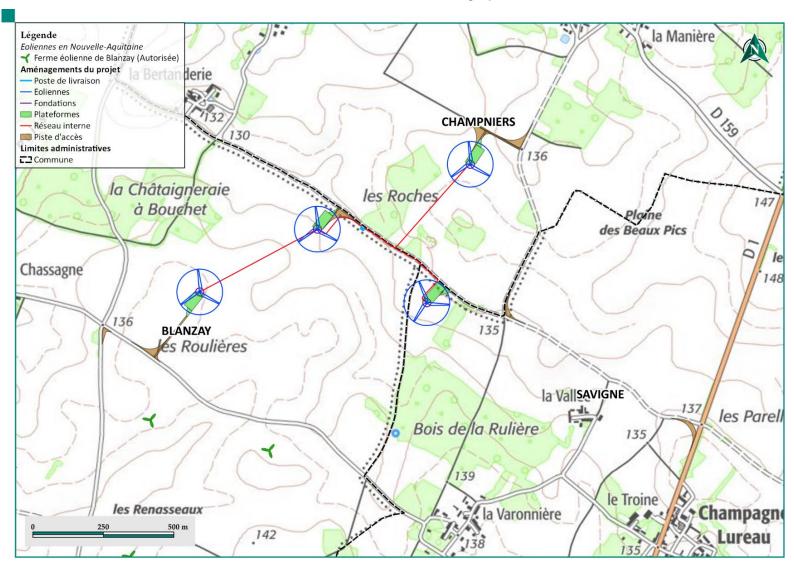
La Ferme éolienne de Blanzay 2 - Energie, comprend 4 aérogénérateurs dont les mâts ont une hauteur supérieure à 50 m. Cette installation est donc soumise à autorisation (A) au titre des installations classées pour la protection de l'environnement et doit présenter une étude de dangers au sein de sa demande d'autorisation d'exploiter.

2. Informations générales concernant l'installation

2.1. Renseignements administratifs


L'exploitant et le propriétaire de l'installation projetée sont la Ferme éolienne de Blanzay 2 - Energie SAS.

Les statuts ainsi que les principales informations relatives à cette société sont précisés ci-après :

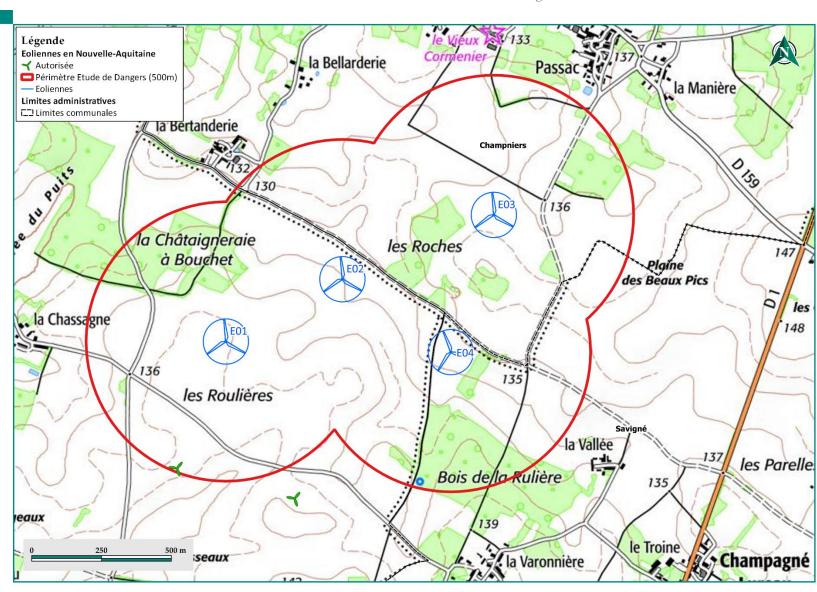

Dénomination	Ferme éolienne de Blanzay 2 - Energie
Date de création de la société	24 octobre 2022
Activité	Production d'électricité (code APE 3511Z)
Forme juridique	Société par Actions Simplifiée
Capital	20 000 €
N° SIRET	920 766 706 00013
Adresse du siège social	1, Rue des Arquebusiers – 67 000 STRASBOURG
Personne chargée de suivre le dossier	Elodie Mazeau, Responsable régionale, Pôle études VOLKSWIND
Personne chargée de rédiger l'étude	Julie Hemery, Chargée d'études, VOLKSWIND

2.2. Localisation du site

La Ferme éolienne de Blanzay 2 - Energie composée de 4 aérogénérateurs, est localisée sur les communes de Blanzay, Champniers et Savigné, dans le département de la Vienne, en région Nouvelle-Aquitaine.

Carte 1 : Localisation de la zone de projet à l'échelle régionale

Carte 2 : Plan d'ensemble du projet


2.3. <u>Définition de l'aire d'étude</u>

Compte tenu des spécificités de l'organisation spatiale d'un parc éolien, composé de plusieurs éléments disjoints, la zone sur laquelle porte l'étude de dangers est constituée d'une aire d'étude par éolienne.

Chaque aire d'étude correspond à l'ensemble des points situés à une distance inférieure ou égale à 500 m à partir de l'emprise du mât de l'aérogénérateur. Cette distance équivaut à la distance d'effet retenue pour les phénomènes de projection, telle que définie au paragraphe 8.2.4.

Les expertises réalisées ont en effet montré l'absence d'effet à l'extérieur du poste de livraison pour chacun des phénomènes dangereux potentiels pouvant l'affecter.

La zone d'étude de danger se situe sur les communes de Blanzay, Champniers et Savigné, et couvre une superficie d'environ 211,5 ha (voir carte ci-après).

Carte 3 : Localisation de la zone d'étude de dangers

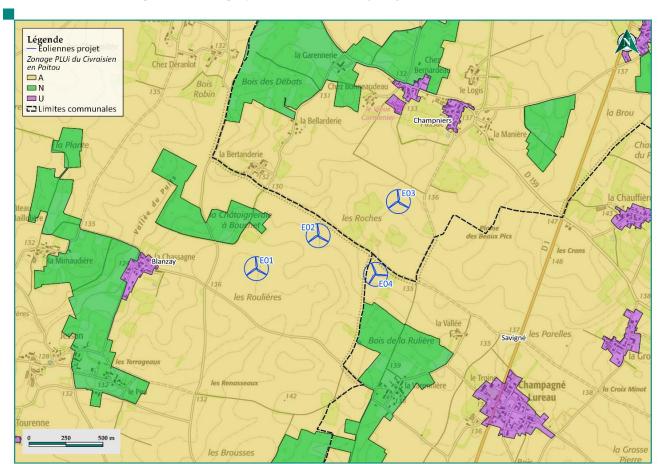
3. Description de l'environnement de l'installation

Ce chapitre a pour objectif de décrire l'environnement dans la zone d'étude de l'installation, afin d'identifier les principaux intérêts à protéger (enjeux) et les facteurs de risque que peut représenter l'environnement vis-à-vis de l'installation (agresseurs potentiels).

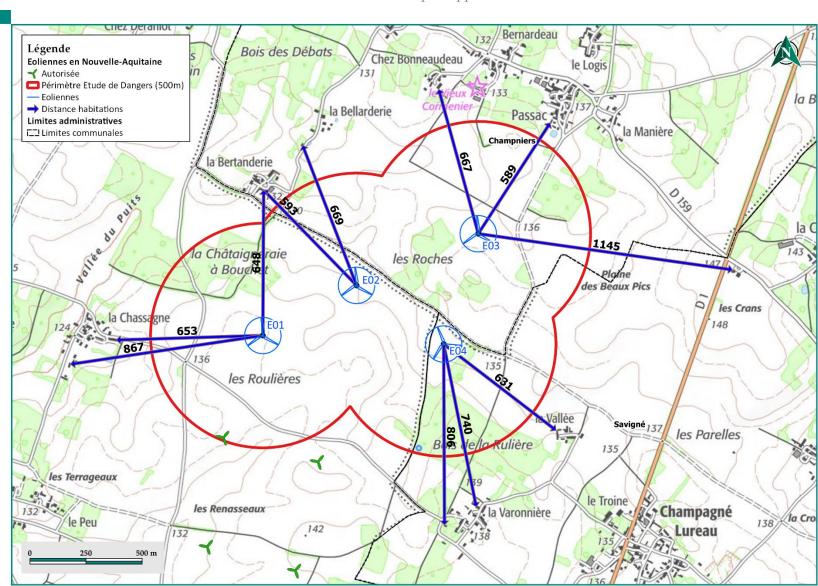
3.1. Environnement humain

3.1.1. Zones urbanisées

Les communes de Blanzay, Champniers et Savigné comptaient respectivement 804, 357 et 1 364 habitants au dernier recensement datant de 2019 (Source : Insee).


Aucune habitation ni zone à urbaniser à vocation d'habitat de ces communes ne se situe dans la zone d'étude. L'habitation la plus proche du projet se situe à 589 m du mât l'éolienne E03 ; elle est localisée au niveau du hameau *Passac*, sur la commune de Champniers.

Les communes de Blanzay, Champniers et Savigné sont couvertes par le PLUi (Plan Local d'Urbanisme intercommunal). La zone d'implantation potentielle du projet se positionne en zone agricole (A) et naturelle (N). D'après le règlement écrit du PLUi, version pour conseil communautaire d'arrêt du 28 mai 2019, les éoliennes sont considérées comme des « équipements d'intérêt collectif et services publics », placées dans la sous-destination « Locaux techniques et industriels des administrations publiques et assimilées ».


En zone agricole (A) et en zone naturelle et forestière (N), les constructions du sous-secteur « Locaux techniques et industriels des administrations publiques et assimilées » sont autorisées sous condition de ne pas porter atteinte aux activités agricoles ainsi qu'à la sauvegarde des milieux et des paysages.

Ainsi, l'implantation d'éoliennes est autorisée sur ce secteur des communes de Blanzay, Champniers et Savigné.

Une attestation de conformité du projet par rapport au règlement d'urbanisme en vigueur est annexée à l'étude (Voir en annexe 2).

Carte 4 : Implantation du projet vis-à-vis du zonage réglementaire de l'urbanisme

Carte 5 : Localisation des habitations par rapport au mât des éoliennes

3.1.2. <u>Etablissements recevant du public (ERP)</u>

Aucun établissement recevant du public n'est présent dans la zone d'étude de dangers de 500 mètres définit autour de chaque aérogénérateur.

3.1.3. <u>Installations classées pour la protection de l'environnement (ICPE)</u> et installations nucléaires de base (INB)

Dans le périmètre de 500 mètres est recensée une installation classée pour la protection de l'environnement (ICPE).

Il s'agit d'une éolienne du parc autorisé de Blanzay située à environ 486 mètres de l'éolienne E01. Cette ICPE est soumise au régime de l'autorisation.

Aucune installation nucléaire (INB) n'est recensée dans le périmètre d'étude de 500 mètres.

3.1.4. <u>Autres activités</u>

Les activités au sein du périmètre d'étude sont principalement agricoles.

3.2. <u>Environnement naturel</u>

3.2.1. Contexte climatique

D'après Météofrance, la station de mesure la plus proche de la zone d'étude est celle de Civray, localisée à 4 km au sud de la zone de projet.

3.2.1.1. Température

Selon les relevés de la station météorologique de Civray, sur la période 1981-2010, la température moyenne varie entre 5,5 °C et 20,3 °C.

Le mois d'août est le plus chaud, avec des températures maximales moyennes de 26,4°C. Le mois de février est le plus froid, avec une température minimale moyenne de 2,5°C.

Les températures sont donc plutôt tempérées.

Tableau 2 : Températures mini-maxi et moyennes mensuelles à Civray en °C (Source : Météo France)

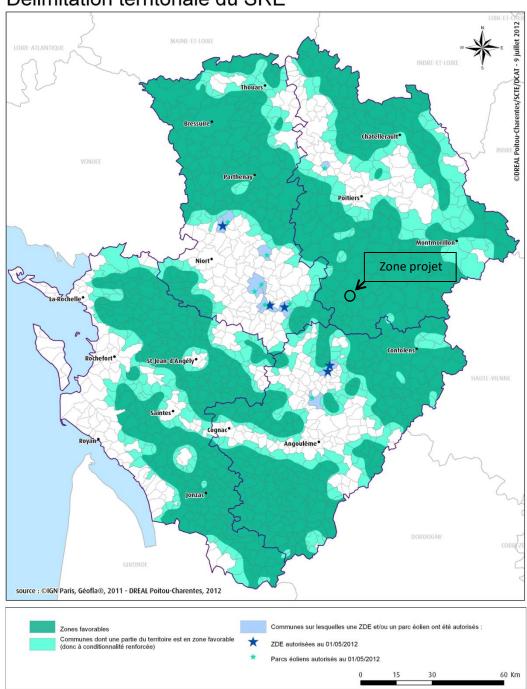
	J	F	М	A	М	J	J	A	S	0	N	D
T min (°C)	2.6	2.5	4.2	5.9	9.7	12.6	14.1	14.2	11.2	9.2	5.1	2.7
T max (°C)	8.4	9.9	13.4	15.8	20.3	23.7	26.1	26.4	22.2	17.5	11.6	8.3
T moyennes (°C)	5.5	6.2	8.8	10.8	15.0	18.1	20.1	20.3	16.7	13.3	8.4	5.5

Le nombre de jours moyen avec une température minimale inférieure à 0°C est d'environ 40 jours par an (Météo France).

3.2.1.2. Pluviométrie

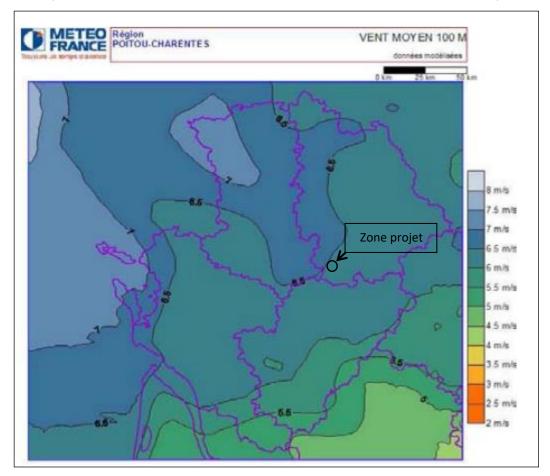
Les précipitations peuvent varier significativement (par exemple entre les mois de mai et de juin), globalement il pleut plus l'hiver que l'été. La pluviométrie minimale est de 50,7 mm au mois de juillet et la pluviométrie maximale de 98,9 mm au mois de décembre pour la station de Civray.

Tableau 3 : Pluviométrie moyenne sur la station de Civray en mm (Source : Météo France)


	J	F	М	A	М	J	J	A	S	0	N	D
P (mm)	84.8	58.8	61.0	69.4	64.9	64.6	50.7	56.0	62.8	91.5	96.0	98.9

3.2.1.3. <u>Potentiel éolien</u>

D'après la cartographie des zones favorables à l'éolien (prise en compte de contraintes), extrait du Schéma Régional Eolien (SRE) Poitou-Charentes, le site de Blanzay, Champniers et Savigné est situé dans une zone favorable à l'éolien. Toutefois, ces SRE ont tous été annulés à la suite de recours d'associations anti-éoliennes. Le Décret n° 2016-1071 du 3 août 2016 relatif au schéma régional d'aménagement, de développement durable et d'égalité des territoires est à l'origine de la future génération des schémas éoliens, qui doit être mise en place suite à la réorganisation territoriale de la République (loi du 7 août 2015). Il précise les modalités de mise en place des SRADDET (schéma régional d'aménagement, de développement durable et d'égalité des territoires) dans lesquels seront intégrés les SRCAE actuels.


Carte 6 : Délimitation des zones favorables à l'éolien en région Poitou-Charentes (Source : DREAL Poitou-Charentes & Météo France – SRE Poitou-Charentes)

Délimitation territoriale du SRE

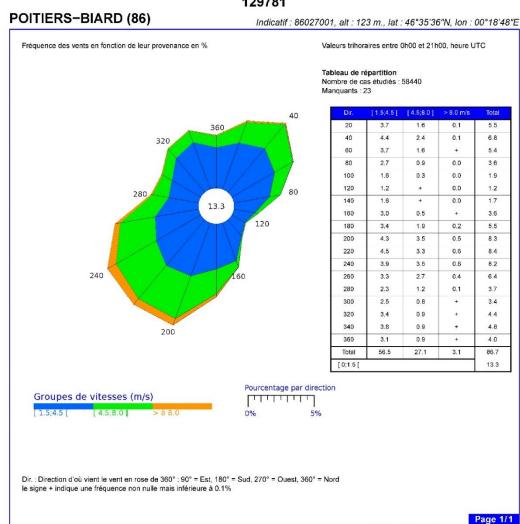
D'après la carte ci-dessous, le gisement éolien du site de Blanzay, Champniers et Savigné est compris entre 6 et 6,5 m/s à une altitude de 100 m.

Carte 7 : Vitesse du vent moyen à 100 m d'altitude en Poitou-Charentes (Source : DREAL Poitou-Charentes & Météo France – SRE Poitou-Charentes)

La station météorologique la plus proche disposant d'une rose des vents se situe à Poitiers (à 43 km au nord de la zone de projet). La rose des vents ci-dessous est fournie à titre indicatif car elle ne saurait nullement représenter fidèlement les régimes de vent observés au niveau local. Cependant, d'après les indications de Météo-France, les vents sont majoritairement de secteur sud-ouest à nord-est (Cf roses des vents de la station de Poitiers-Biard ciaprès) avec parfois des vitesses pouvant dépasser 8 m/s.

Figure 1 : Rose des vents des stations météorologiques de Poitiers-Biard (86)

(Source: Météo France)



NORMALES DE ROSE DE VENT

Vent horaire à 10 mètres, moyenné sur 10 mn

Période 1991-2010

129781

Edité le : 01/12/2016 dans l'état de la base

N.B.: La vente, redistribution ou rediffusion des informations reçues, en l'état ou sous forme de produits dérivés, est strictement interdite sans l'accord de METEO-FRANCE

> Météo-France 73 avenue de Paris 94165 SAINT MANDE Tél.: 0 890 71 14 15 - Email: contactmail@meteo.fr

Les phénomènes de vents extrêmes, pouvant empêcher le bon fonctionnement des installations, sont assez rares. Seuls les épisodes supérieurs à 22,5 m/s (soit 81 km/h) sont en effet susceptibles de provoquer l'arrêt momentané des éoliennes (« mise en drapeau »). La rafale maximale de vents observée sur la station de Poitiers-Biard a eu lieu lors de la tempête de 1999 et s'élevait à 39 m/s soit 140,4 km/h. Lors des épisodes de rafales de vent exceptionnelles, les éoliennes se mettront en drapeau provoquant leur arrêt momentané. Au regard des données disponibles, le territoire des communes de Blanzay, Champniers et Savigné, apparait comme un secteur propice au développement d'un projet éolien.

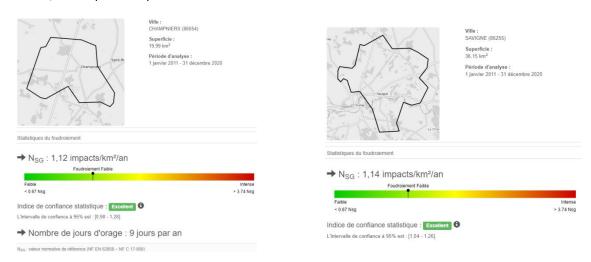
3.2.2. <u>Risques naturels</u>

Cette partie liste les différents risques naturels identifiés dans la zone d'étude. En effet, ces risques naturels sont susceptibles de constituer des agresseurs potentiels pour les éoliennes et devront donc être pris en compte dans l'évaluation préliminaire des risques.

3.2.2.1. <u>La Foudre</u>

Les éoliennes sont des projets de grande dimension, pour lesquels le risque orageux, et notamment la foudre, doit être pris en compte. L'activité orageuse d'une région est définie par le niveau kéraunique (Nk), c'est-à-dire le nombre de jours où l'on entend gronder le tonnerre. La majorité des orages circulent dans un régime de vents de Sud-Ouest, qui apportent de l'air d'origine subtropicale, chaud et humide. La plupart d'entre eux s'observent entre mai et septembre ; la moyenne nationale est de 20 jours de tonnerre par an, dont 14 jours entre mai et août.

ZONE du projet


WARNE DE LORE TORE DULL TANNE AUGUST DE LORE DULL TANNE AUGUST DE

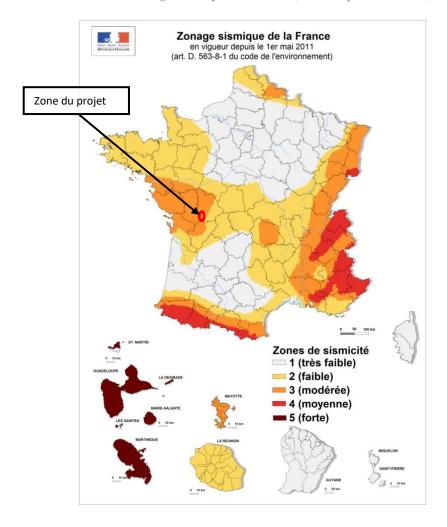
Carte 8 : Carte de France du niveau kéraunique

Aux alentours de la zone d'étude, la valeur du niveau kéraunique est inférieure à 25 jours. Le site de Météorage calcule une valeur équivalente au niveau kéraunique, le nombre de jours d'orage, issu des mesures du réseau de détection de foudre. Pour chaque commune, ce nombre est calculé à partir de la Base de Données Foudre et représente une moyenne sur les dix dernières années. Ce critère ne caractérise pas l'importance des orages. La meilleure représentation de l'activité orageuse est la densité d'arcs (Da) qui est le nombre d'arcs de foudre au sol par km² et par an. D'après Météorage, sur la commune de Blanzay, le nombre la densité d'arcs est de 1,02 arcs par an et par km² tandis que la moyenne française est de 1,12 arcs/km²/an.

Sur la commune de Champniers, la densité d'arcs et de 1,12 arcs par an et par km² et sur la commune de Savigné, elle est de 1,14 arcs par an et par km².

Le niveau kéraunique du site du projet de la Ferme éolienne de Blanzay 2 - Energie correspond à la moyenne nationale.

3.2.2.2. Sismicité


Le territoire national est divisé au niveau cantonal en cinq zones de sismicité croissante en fonction de la probabilité d'occurrence des séismes :

- ↓ Une zone de sismicité 1 où il n'y a pas de prescription parasismique particulière pour les bâtiments à risque normal (l'aléa sismique associé à cette zone est qualifié de très faible),
- → Quatre zones de sismicité 2 à 5, où les règles de construction parasismique sont applicables aux nouveaux bâtiments, et aux bâtiments anciens dans des conditions particulières.

Tableau 4 : Zones de sismicité

1	2	3	4	5
Très faible	Faible	Modérée	Moyenne	Forte

Carte 9 : Zonage sismique de France (source : planseisme.fr)

D'après la cartographie ci-contre, le secteur du projet se situe dans la zone 3 correspondant à un aléa sismique modéré.

Sur la commune de Blanzay, quatre séismes ont été ressentis au cours des deux derniers siècles. L'épicentre de ces séismes était tous localisés à des distances de 28 à 122 km de la commune.

Tableau 5 : Recensement des séismes ressentis sur la commune de Blanzay

(Source : sisfrance.net)

<u>Date</u>	<u>Heure</u>	Choc	Localisation épicentrale	Région ou pays de l'épicentre	<u>Intensité</u> <u>épicentrale</u>	Intensité dans la commune
8 Juin 2001	13 h 26 min 53 sec		BOCAGE VENDEEN (CHANTONNAY)	PAYS NANTAIS ET VENDEEN	5	0
5 Avril 2001	17 h 26 min 59 sec		MELLOIS (SEPVRET)	POITOU	5	0
7 Septembre 1972	22 h 26 min 54 sec		ILE D'OLERON	CHARENTES	7	4
28 Septembre 1935	16 h 17 min 50 sec	Е	ANGOUMOIS (ROUILLAC)	CHARENTES	7	4,5

Sur la commune de Champniers, deux séismes ont été ressentis (années 2001 et 2006). Leurs épicentres étaient localisés à plus de 60 et 110 km.

Tableau 6 : Recensement des séismes ressentis sur la commune de Champniers

(Source : sisfrance.net)

<u>Date</u>	<u>Heure</u>	Choc	Localisation épicentrale	Région ou pays de lépicentre	<u>Intensité</u> <u>épicentrale</u>	Intensité dans la commune
24 Août 2006	20 h 59 sec		<u>SAINTONGE (E. MATHA)</u>	CHARENTES	5	0
8 Juin 2001	13 h 26 min 53 sec		BOCAGE VENDEEN (CHANTONNAY)	PAYS NANTAIS ET VENDEEN	5	2,5

Sur la commune de Savigné, trois séismes ont été ressentis au cours des deux derniers siècles. En 2001 et 1972 les épicentres étaient situés à plus de 120 km de la commune. L'épicentre du séisme le plus antérieur (1903) était situé sur la commune de Charroux, à environ 8 km de la zone du projet.

Tableau 7 : Recensement des séismes ressentis sur la commune de Savigné

(Source : sisfrance.net)

<u>Date</u>	<u>Heure</u>	<u>Choc</u>	Localisation épicentrale	Région ou pays de lépicentre	<u>Intensité</u> <u>épicentrale</u>	Intensité dans la commune
8 Juin 2001	13 h 26 min 53 sec		BOCAGE VENDEEN (CHANTONNAY)	PAYS NANTAIS ET VENDEEN	5	0
7 Septembre 1972	22 h 26 min 54 sec		ILE D'OLERON	CHARENTES	7	3,5
4 Juillet 1903	12 h 15 min		MELLOIS (CIVRAY)	POITOU	5	

Le pétitionnaire prend en considération le risque sismique de la zone d'étude ; l'élaboration du plan d'implantation intègre les caractéristiques géologiques locales (failles, blocs effondrés...).

Une étude géotechnique menée après obtention de l'autorisation unique, affinera la problématique en conséquence.

3.2.2.3. <u>Le risque d'inondation</u>

Une inondation est une submersion plus ou moins rapide d'une zone, due à une augmentation du débit d'un cours d'eau provoquée par des pluies importantes et durables ou par la rupture d'une importante retenue d'eau. Elle

peut se traduire par un débordement du cours d'eau, une remontée de la nappe phréatique, une stagnation des eaux pluviales.

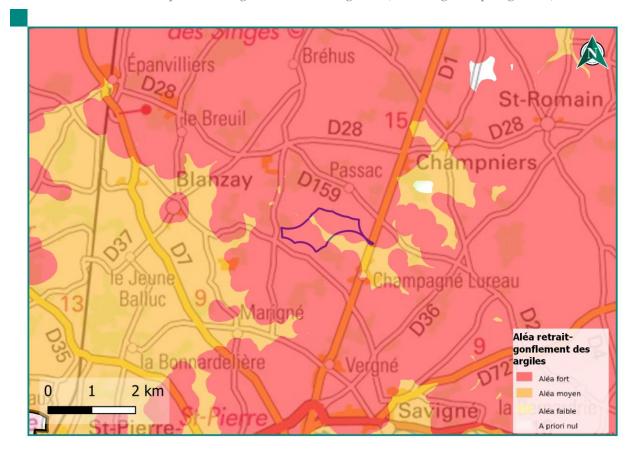
D'après le dossier départemental sur les risques majeurs (DDRM) de la Vienne, les communes de Blanzay, Champniers et Savigné ne sont pas concernées par le risque inondation.

La commune de Savigné est concernée par un Plan Particulier d'Intervention (PPI) vis-à-vis du barrage de Mas Chaban, situé à environ 43 km au sud de la commune, plus en amont de la Charente. La rupture de ce barrage de classe A peut provoquer une inondation importante due au déferlement de l'onde de submersion. Toutefois la zone du projet se situe en dehors de cette zone de submersion.

SOMMIERES-DU-C CHATEAU-GAR **ROMAGNE** Zones de submersion en cas de rupture de barrage Bréhus ZP500m St-RSAINT-ROMAIN Breuil Limites communales D28 CHAMPNIERS CHAUNAY Passac D159 Rabbis BLANZAY nay CHAMPAGNE-LE-SEC gné fe Jeune Champagné Lureau Balluc A CHAPELLE-BATON ec Marign Vergne SAVIGNE LINAZAY la Bonnarde lière SAINT-PIERRE-D'EXIDEUIL la Bernar Savigne 10 CIVRAÝ

Carte 9 : Zone de submersion en cas de rupture du barrage de Mas-Chaban (source : DDT Charente)

La zone du projet se situe sur un point relativement haut et en dehors de la zone d'influence des nappes, aucune contrainte n'est à prévoir.


3.2.2.4. Le risque de retrait – gonflement des argiles

CHARROUX

Les risques de retrait/gonflement des argiles rendent le sol plus instable. En effet, les sols argileux se rétractent en période de sécheresse, ce qui se traduit par des tassements différentiels pouvant occasionner des dégâts parfois importants aux constructions de taille raisonnable comme les habitations.

D'après la cartographie du BRGM (cf. carte ci-dessous), un aléa de retrait gonflement des argiles de niveau fort domine la zone d'étude du projet. Par principe de précaution et au regard de la masse des aérogénérateurs, une

étude géotechnique in situ sera réalisée en préambule aux travaux de construction et permettront d'adapter au mieux les techniques et caractéristiques de la construction aux contraintes géologiques locales.

Carte 10 : Risque « retrait gonflement des argiles » (Source : georisques.gouv.fr)

3.2.2.5. Arrêtés de catastrophe naturelle

Afin de prévenir les catastrophes naturelles un plan de prévention des risques naturels (PPR) a été mis en place et est conduit par les services de l'Etat. Un PPR se base sur l'analyse historique des principaux phénomènes ainsi que leurs impacts sur les personnes et les biens existants ou futurs. Le PPR réglemente fortement les nouvelles constructions dans les zones très exposées. Les communes de la zone du projet ne sont pas concernées par un plan de prévention des risques naturels.

Après consultation de la base de données sur le site Géorisques.fr, 10 arrêtés de catastrophes naturelles ont été recensés sur la commune de Blanzay, 12 sur la commune de Champniers et 21 sur la commune de Savigné :

Tableau 8 : Arrêtés de reconnaissance de catastrophe naturelle sur la commune de Blanzay (Source : georisques.fr)

Inondations et/ou Coulées de Boue : 3

Code national CATNAT	Début le	Fin le	Arrêté du	Sur le Journal Officiel du
IOCE1005933A	27/02/2010	01/03/2010	01/03/2010	02/03/2010
INTE9900627A	25/12/1999	29/12/1999	29/12/1999	30/12/1999
NOR19830111	08/12/1982	31/12/1982	31/12/1982	13/01/1983

Mouvement de Terrain : 2

Code national CATNAT	Début le	Fin le	Arrêté du	Sur le Journal Officiel du
IOCE1005933A	27/02/2010	01/03/2010	01/03/2010	02/03/2010
INTE9900627A	25/12/1999	29/12/1999	29/12/1999	30/12/1999

Sécheresse : 5

Code national CATNAT	Début le	Fin le	Arrêté du	Sur le Journal Officiel du
INTE2118485A	01/01/2020	10/12/2020	10/12/2020	09/07/2021
INTE2023940A	01/01/2019	31/12/2019	31/12/2019	25/10/2020
INTE1917051A	15/06/2018	30/10/2018	30/10/2018	17/07/2019
INTE1228647A	01/07/2011	29/08/2011	29/08/2011	17/07/2012
INTE1228647A	01/04/2011	30/06/2011	30/06/2011	17/07/2012

Tableau 9 : Arrêtés de reconnaissance de catastrophe naturelle sur la commune de Champniers (Source : georisques.fr)

Grêle:1

Code national CATNAT	Début le	Fin le	Arrêté du	Sur le Journal Officiel du
NOR19831125	26/07/1983	27/07/1983	27/07/1983	01/12/1983

Inondations et/ou Coulées de Boue : 5

Code national CATNAT	Début le	Fin le	Arrêté du	Sur le Journal Officiel du	
INTE1726132A	09/07/2017	09/07/2017	09/07/2017	27/10/2017	
IOCE1005933A	27/02/2010	01/03/2010	01/03/2010	02/03/2010	
INTE9900627A	25/12/1999	29/12/1999	29/12/1999	30/12/1999	
NOR19831125	26/07/1983	27/07/1983	27/07/1983	01/12/1983	
NOR19830111	08/12/1982	31/12/1982	31/12/1982	13/01/1983	

Mouvement de Terrain : 2

Code national CATNAT	Début le	Fin le	Arrêté du	Sur le Journal Officiel du
IOCE1005933A	27/02/2010	01/03/2010	01/03/2010	02/03/2010
INTE9900627A	25/12/1999	29/12/1999	29/12/1999	30/12/1999

Sécheresse : 3

Code national CATNAT	Début le	Fin le	Arrêté du	Sur le Journal Officiel du	
INTE1917051A	01/08/2018	31/08/2018	31/08/2018	17/07/2019	
INTE1719708A	01/01/2016	31/03/2016	31/03/2016	01/09/2017	
INTE1633037A	01/07/2015	30/09/2015	30/09/2015	27/12/2016	

Tempête : 1

Code national CATNAT	Début le	Fin le	Arrêté du	Sur le Journal Officiel du
NOR19831125	26/07/1983	27/07/1983	27/07/1983	01/12/1983

Sur le Journal Officiel du

Tableau 10 : Arrêtés de reconnaissance de catastrophe naturelle sur la commune de Savigné (Source : georisque.fr)

Arrêté du

Gi		

Code national CATNAT

NOR19830910	26/07/1983	27/07/1983	27/07/1983	11/09/1983
nondations et/ou Coulées de Boue	e : 6			
Code national CATNAT	Début le	Fin le	Arrêté du	Sur le Journal Officiel du
IOCE1005933A	27/02/2010	01/03/2010	01/03/2010	02/03/2010

Fin le

Début le

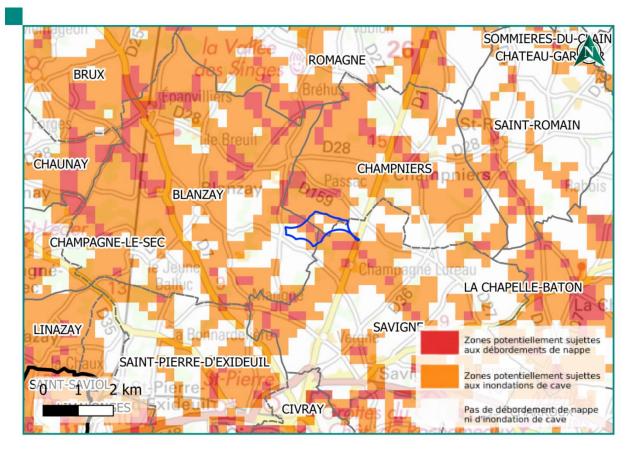
Code national CATNAT	Début le	Fin le	Arrêtê du	Sur le Journal Officiel du
IOCE1005933A	27/02/2010	01/03/2010	01/03/2010	02/03/2010
INTE9900627A	25/12/1999	29/12/1999	29/12/1999	30/12/1999
INTE9500070A	17/01/1995	31/01/1995	31/01/1995	08/02/1995
INTE9400065A	24/12/1993	11/01/1994	11/01/1994	18/02/1994
NOR19830910	26/07/1983	27/07/1983	27/07/1983	11/09/1983
NOR19830111	08/12/1982	31/12/1982	31/12/1982	13/01/1983

Mouvement de Terrain : 2

Code national CATNAT	Début le	Fin le	Arrêté du	Sur le Journal Officiel du
IOCE1005933A	27/02/2010	01/03/2010	01/03/2010	02/03/2010
INTE9900627A	25/12/1999	29/12/1999	29/12/1999	30/12/1999

Sécheresse : 11

Code national CATNAT	Début le	Fin le	Arrêté du	Sur le Journal Officiel du
INTE2118485A	01/01/2020	08/12/2020	08/12/2020	09/07/2021
INTE2023940A	01/01/2019	31/12/2019	31/12/2019	25/10/2020
INTE1415221A	10/01/2013	12/04/2013	12/04/2013	25/07/2014
INTE1228647A	01/04/2011	30/06/2011	30/06/2011	17/07/2012
INTE1228647A	01/03/2011	31/03/2011	31/03/2011	17/07/2012
IOCE1135124A	15/06/2010	30/10/2010	30/10/2010	03/01/2012
IOCE0804637A	01/07/2005	30/09/2005	30/09/2005	22/02/2008
IOCE0815769A	01/01/2005	31/03/2005	31/03/2005	05/07/2008
IOCE0804637A	01/01/2004	31/12/2004	31/12/2004	22/02/2008
INTE9900216A	01/10/1996	30/09/1998	30/09/1998	05/06/1999
INTE9700056A	01/01/1995	30/09/1996	30/09/1996	23/02/1997


Tempête : 1

Code national CATNAT	Début le	Fin le	Arrêté du	Sur le Journal Officiel du
NOR19830910	26/07/1983	27/07/1983	27/07/1983	11/09/1983

3.2.2.6. Le risque de remontée de nappes

Des risques de remontées de nappes sont possibles sur le territoire français. D'après la carte interactive éditée par georisques.gouv.fr, une partie de la zone est sujette aux remontées de nappes. Cependant des études géologiques réalisées avant la construction du parc permettront de confirmer ce résultat afin d'évaluer le risque réel de remontée de nappes.

Carte 11 : Identification du risque de remontée de nappes sur les communes de Blanzay, Champniers et Savigné (source : georisques.gouv.fr)

3.3. <u>Environnement matériel</u>

3.3.1. Voies de communication

La zone d'étude englobe un ensemble de chemins ruraux, chemins d'exploitation et voies communales. En raison de leur moindre importance, aucune mesure du Trafic Moyen Journalier Automobile n'a été effectuée.

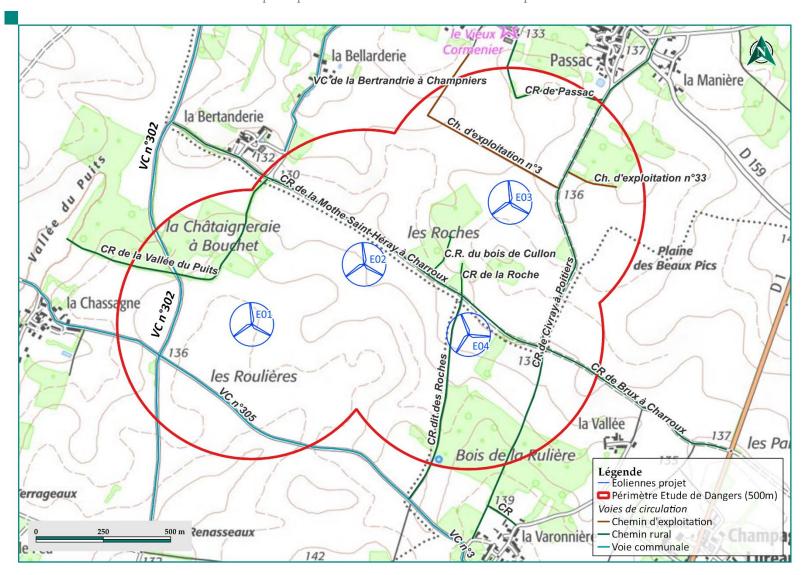

Les caractéristiques des voies de communication principales au sein du périmètre d'étude sont les suivantes :

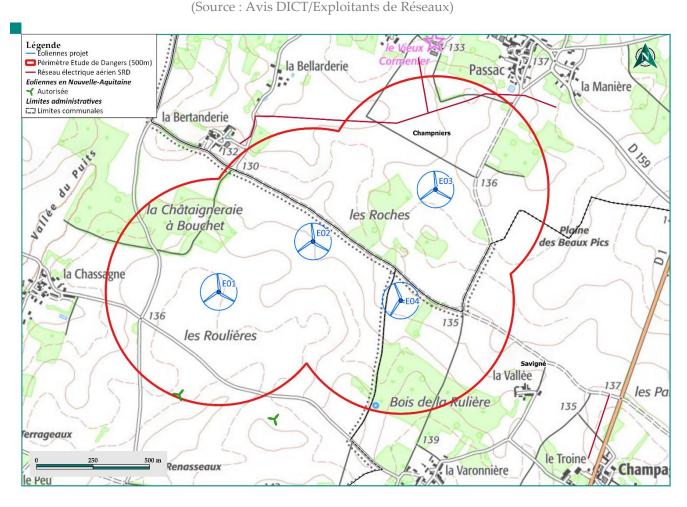
Tableau 11 : Informations relatives aux voies de communication principales comprises dans la zone d'étude

Dénomination	Distance aux éoliennes requise par le Conseil Départemental (CD86)	Distance à l'éolienne la plus proche	Longueur dans le périmètre d'étude	Traffic moyen journalier (source : CD86)
Voie Communale N°302 de Chanteloux à Romagne (<i>Blanzay</i>)	Aucune distance requise	273 m / E01	743 m	NA (aucun comptage)
Voie Communale N°305 de Blanzay à la Varonnière (<i>Blanzay</i>)	Aucune distance requise	283 m / E01	1276 m	NA (aucun comptage)
Chemin rural de la Vallée du Puits (Blanzay)	Aucune distance requise	220 m / E01	743 m	NA (aucun comptage)
Chemin rural dit des Roches (Blanzay)	Aucune distance requise	59 m / E04	789 m	NA (aucun comptage)
Chemin rural de Civray à Poitiers (Savigné, Champniers)	Aucune distance requise	174 m / E03	1 378 m	NA (aucun comptage)
Chemin rural de la Mothe Saint-Héray à Charroux	Aucune distance requise	83 m / E04	1 226 m	NA (aucun comptage)
Chemin rural du bois de Cullon (Champniers)	Aucune distance requise	241 m / E02	170 m	NA (aucun comptage)
Chemin rural de la Roche (Champniers)	Aucune distance requise	153 m / E04	113 m	NA (aucun comptage)
Chemin rural (Champniers)	Aucune distance requise	476 m / E02	95 m	NA (aucun comptage)
Chemin rural de Passac (Champniers)	Aucune distance requise	390 m / E03	422 m	NA (aucun comptage)
Chemin d'exploitation N°3 (Champniers)	Aucune distance requise	130 m / E03	700 m	NA (aucun comptage)
Chemin d'exploitation N°33 (Champniers)	Aucune distance requise	244 m / E03	197 m	NA (aucun comptage)

L'éolienne E04 surplombe le chemin rural dit des Roches, à la limite communale entre Blanzay et Savigné. Il n'y a pas de transport fluvial ou ferroviaire ni de servitudes liées à ces moyens de transport sur le périmètre d'étude.

Avec une hauteur en bout de pale de 200m, le projet respecte les contraintes aéronautiques de la zone.

Carte 12 : Les principales voies de communication dans le périmètre d'étude


3.3.2. <u>Réseaux publics et privés</u>

3.3.2.1. Réseau électrique et de communication

D'après le gestionnaire de réseau électrique SRD, dans son avis du 7 juillet 2021, le nord de la zone de l'étude de dangers est traversé par une ligne HTA aérienne à une distance d'environ 330 mètres de l'éolienne la plus proche (E03).

Il n'existe pas d'autre réseau électrique et de communication dans le périmètre d'étude.

Carte 13 : Réseaux électriques et de communication

3.3.2.2. <u>Réseau d'eau</u>

D'après la régie d'exploitation Eaux de Vienne - SIVEER, dans son avis du 5 mars 2021, il existe une conduite d'alimentation en eau potable qui traverse le périmètre d'étude dans sa partie sud-ouest, le long de la voirie.

Cette canalisation passe à environ 272 m à l'Ouest de l'éolienne la plus proche, E01.

Légende — Eoliennes projet Périmètre Etude de Dangers (500m)
Réseau AEP - Eaux de Vienne la Bellarderie Passac 3 Eoliennes en Nouvelle-Aquitaine

Autorisée la Manière Limites administratives la Bertanderie 136 la Châtaigneraie les Roches à Boughet Plaine des Beaux Pics la Chassagne 135 les Roulières la Vallée les Pa Bois de/la Rulière 135 Terrageaux le Troine Renasseaux Champa la Varonnière

Carte 14 : Réseau d'eau à l'intérieur de la zone d'Etude de Dangers (Source : Avis DICT/Exploitants de Réseaux)

De plus, d'après l'ARS, aucun périmètre de protection de captage d'eau potable ne se trouve dans la zone d'étude de dangers.

3.3.2.3. Réseau de gaz

Aucune canalisation de gaz n'existe sur la zone d'étude.

3.3.2.4. Ouvrages publics

Aucun ouvrage public n'est à signaler dans la zone d'étude.

3.4. <u>Cartographie de synthèse</u>

Les enjeux humains et matériels

La comptabilité du nombre de personnes exposées s'appuie sur la fiche n°1 de la circulaire du 10 mai 2010.

Les habitations:

On ne dénombre aucune habitation dans le périmètre d'étude. Personne n'est ainsi exposé à de potentiels risques au sein des habitations.

Les voies de circulation :

Les voies de circulation n'ont à être prises en considération que si elles sont empruntées par un nombre significatif de personnes. En effet, les voies de circulation non structurantes (< 2000 véhicules / jour) sont déjà comptées dans la catégorie des terrains aménagés mais peu fréquentés. Aucune route départementale dont le trafic pourrait être significatif ne traverse la zone d'étude de dangers. L'ensemble des voies de circulation présentes (Voies Communales, Chemins Ruraux et d'exploitation) est à considérer comme routes non structurantes et sera donc compté dans la catégorie des « terrains aménagés mais peu fréquentés ».

Tableau 12 : Nombre de personnes exposées sur l'ensemble du périmètre d'étude

Type de voies	Barème	Distance totale d'exposition	Nombre de personnes exposées
Voies Communales	/	2 019 m	/
Chemins Ruraux et d'exploitation	/	5 883 m	/

Les terrains:

Le nombre de personnes exposées sur des terrains est effectué à partir de barème selon le type de terrain :

- ★ Terrains non aménagés et très peu fréquentés (champs, prairies, forêts, friches, marais...) : 1 personne par tranche de 100 hectares.
- ★ Terrains aménagés mais peu fréquentés (voies de circulation non structurantes, chemins agricoles, plateformes de stockage, vignes, jardins et zones horticoles, gare de triage...): 1 personne par tranche de 10 hectares.
- ★ Terrains aménagés et potentiellement fréquentés ou très fréquentés (parkings, parcs et jardins publics, zones de baignades surveillées, terrains de sport sans gradin néanmoins...): 10 personnes minimum à l'hectare (et prise en compte de la capacité du terrain).

L'intégralité du périmètre d'étude est considérée comme terrains aménagés mais peu fréquentés ce qui permet un calcul conservateur.

Tableau 13 : Nombre de personnes exposées sur l'ensemble du périmètre d'étude

Type de terrains	Barème	Surface	Nombre de personnes exposées
Terrains aménagés mais peu fréquentés	1 personne/10 hectares	211,5 ha	21,2

Au total, 21,2 personnes sont exposées sur les terrains présents au sein de l'ensemble du périmètre d'étude.

Les ERP:

Aucun établissement ne recevant du public n'est présent dans la zone d'étude de dangers.

<u>Installations Classées pour la Protection de l'Environnement (ICPE) et Installations Nucléaires de Base</u> (INB) :

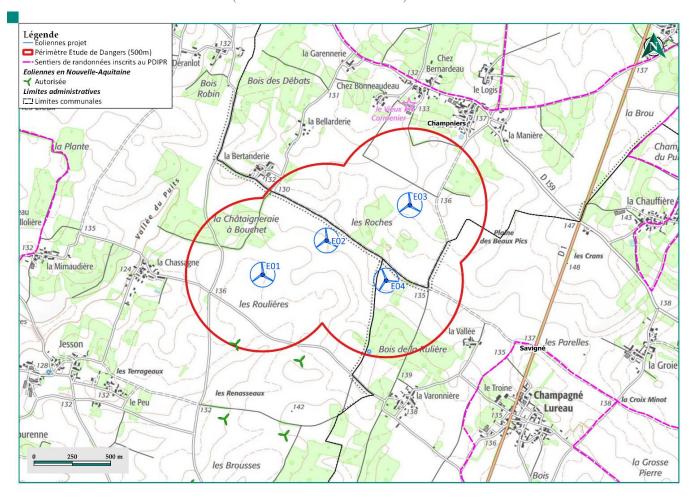
Aucune Installations Nucléaires de Base (INB) n'est présente dans le périmètre de l'étude de danger. Toutefois, dans le périmètre de 500 mètres est recensée une installation classée pour la protection de l'environnement (ICPE).

Il s'agit du parc éolien autorisé de Blanzay qui se situe à proximité immédiate de la zone d'étude, à environ 486 mètres de l'éolienne E01. Une seule des éoliennes de ce parc se situe dans le périmètre d'étude de 500m.

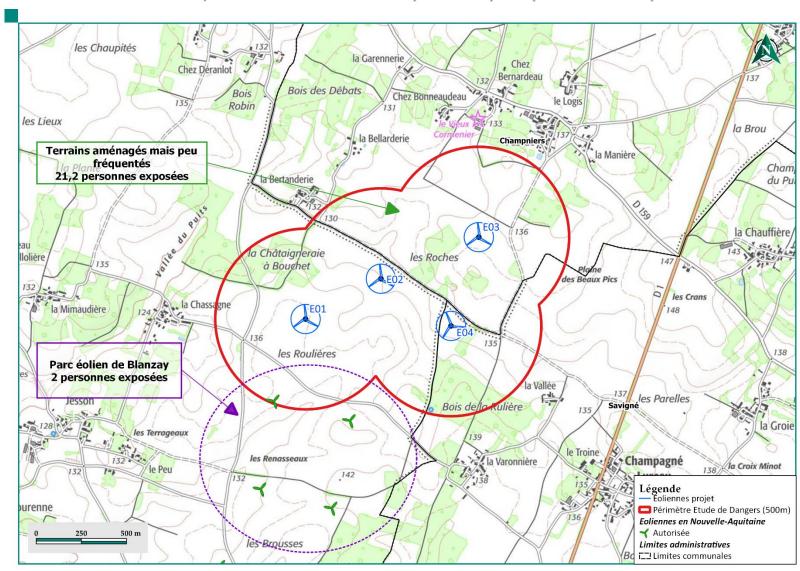
Afin de comptabiliser au mieux la gravité potentielle d'un accident à proximité d'une éolienne, la méthode de comptage des personnes des zones d'activités a été utilisée. Ainsi, le nombre maximal de personnes présentes simultanément dans le cadre de travail en équipe a été pris en compte, conformément au guide de rédaction de l'étude de dangers, établit par l'INERIS en mai 2012.

2 personnes potentiellement exposées sont retenues pour le parc éolien autorisé de Blanzay.

Les autres activités :

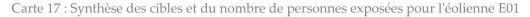

Les activités au sein du périmètre d'étude sont principalement agricoles.

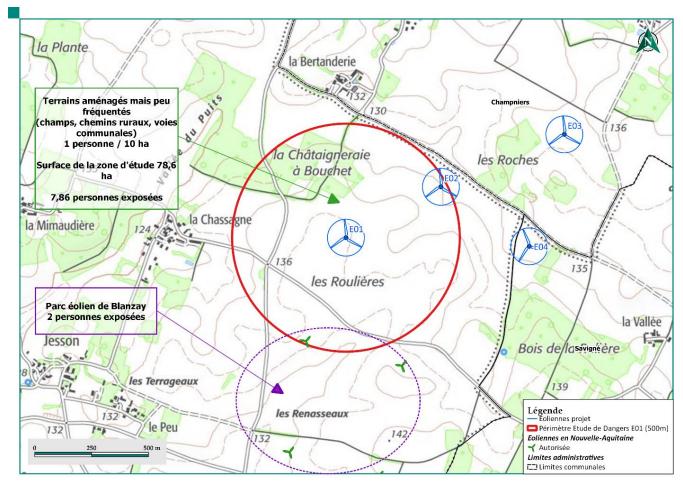
Les chemins de promenade et de randonnée :

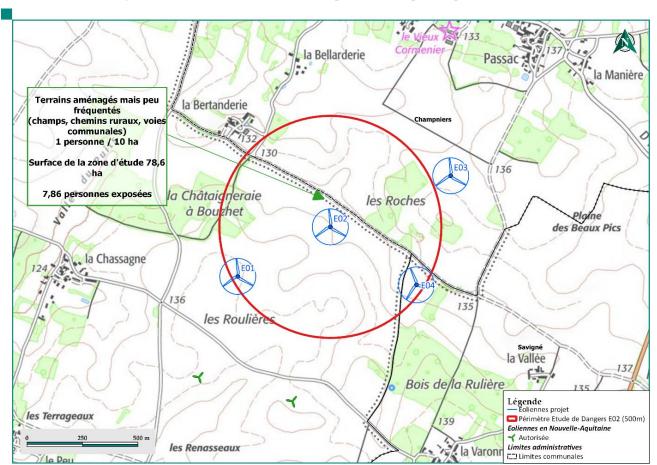

Le Plan Départemental des Itinéraires de Promenades et de randonnée (PDIPR) de la Vienne recense des chemins de randonnées sur les communes de Blanzay, Champniers et Savigné. Aucun de ces sentiers ne traverse la zone d'étude de dangers.

Aucun comptage n'a été réalisé sur ces chemins.

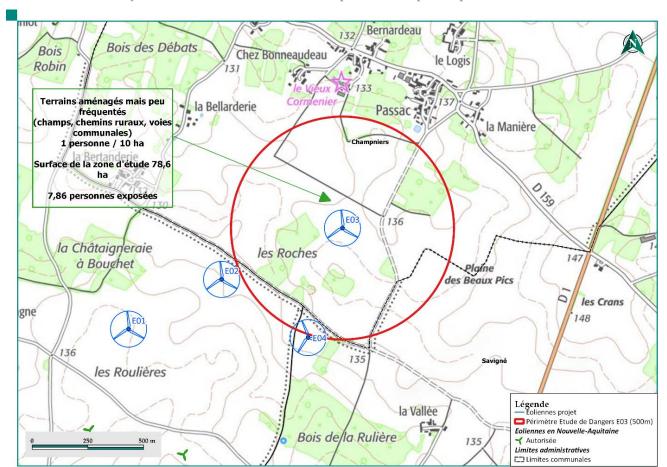
Carte 15 : Sentier de randonnée à proximité de la zone d'étude de dangers (Source : PDIPR de la Vienne)

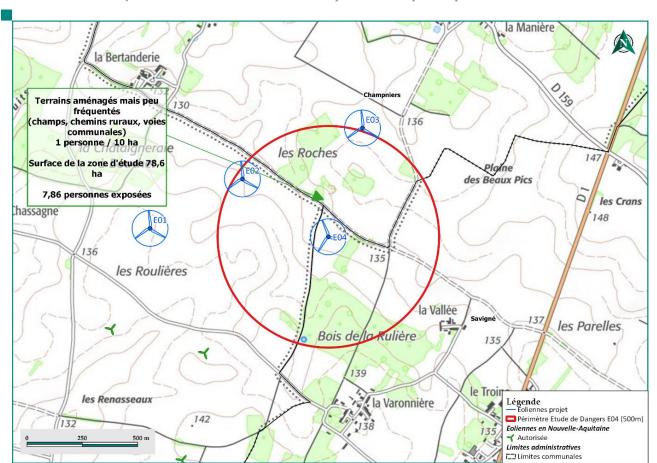



La carte suivante identifie les enjeux humains à l'intérieur et à proximité de la zone d'étude pour l'ensemble du parc éolien.



Carte 16 : Synthèse des cibles et du nombre de personnes exposées pour l'ensemble du parc


Les cartes suivantes précisent les caractéristiques de la zone d'étude autour de chaque aérogénérateur ainsi que le nombre de personnes exposées.



Carte 18 : Synthèse des cibles et du nombre de personnes exposées pour l'éolienne E02

Carte 19 : Synthèse des cibles et du nombre de personnes exposées pour l'éolienne E03

Carte 20 : Synthèse des cibles et du nombre de personnes exposées pour l'éolienne E04

4. Description de l'installation

Ce chapitre a pour but de caractériser l'installation envisagée ainsi que son organisation et son fonctionnement pour permettre d'identifier les principaux potentiels de dangers qu'elle représente (chapitre 5), au regard notamment de la sensibilité de l'environnement décrit précédemment.

4.1. <u>Caractéristiques de l'installation</u>

4.1.1. Activité de l'installation

L'activité principale de la Ferme éolienne de Blanzay 2 – Energie est la production d'électricité à partir de l'énergie mécanique du vent avec une hauteur maximale au moyeu de 119 m. Cette installation est soumise à la rubrique 2980 des installations classées pour la protection de l'environnement.

4.1.2. Composition de l'installation

4.1.2.1. Le parc éolien

La Ferme éolienne de Blanzay 2 – Energie est composée de 4 éoliennes et d'un poste de livraison. Chaque aérogénérateur a une hauteur au moyeu de 118 à 119 mètres et un diamètre de rotor de 162 à 163 mètres, pour une hauteur totale en bout de pale de 200 mètres.

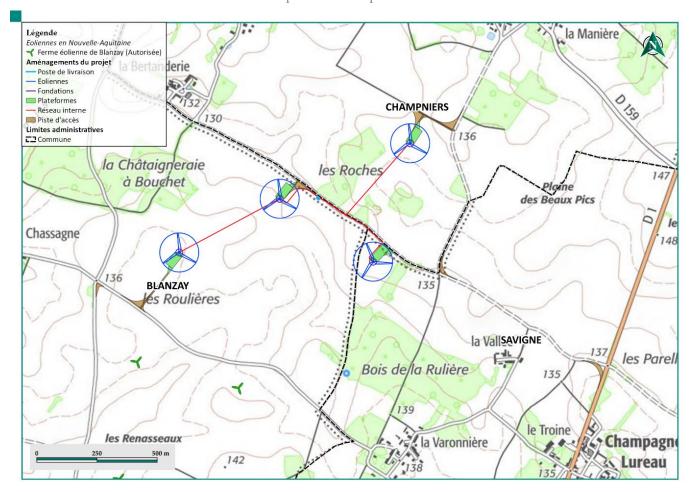

Le tableau suivant indique les coordonnées géographiques des aérogénérateurs et du poste de livraison :

Tableau 14 : Coordonnées des éoliennes et du poste de livraison

Numéro Eolienne et		en Lambert 93 n)*	Coordonnées (dd°mm's		Cote NGF au sol	Cote NGF en
poste de	х	Y	N	E	(m)*	(m) ***
E01	491 061	6 569 976	46°11'50,48"	0°17'24,13"	137	337
E02	491 478	6 570 199	46°11'58,17"	0°17'43,23"	130	330
E03	492 020	6 570 429	46°12'6,22"	0°18'8,15"	137	337
E04	491 866	6 569 938	46°11'50.14"	0°18'1.74"	134	334
Poste de livraison	491 637	6 570 200	46°11'58,37"	0°17'50,64"	130	-

^{*}Les coordonnées X, Y et Z ont été éditées par les géomètres-experts du cabinet Branly Lacaze après repérages sur site (sans bornage contradictoire), et arrondies au mètre près.

^{***} L'altitude en bout de pale est calculée à partir de l'altitude au sol arrondie au mètre près.

Carte 21: Implantation du parc éolien

4.1.2.2. L'éolienne

Au sens de l'arrêté du 26 août 2011, modifié par les arrêtés du 22 juin 2020 et du 10 décembre 2021, relatif aux installations de production d'électricité utilisant l'énergie mécanique du vent, un aérogénérateur (ou éolienne) est défini comme un dispositif mécanique destiné à convertir l'énergie du vent en électricité, composé des principaux éléments suivants : un mât, une nacelle, une génératrice, un rotor constitué d'un moyeu et de pales, ainsi que, le cas échéant, un transformateur.

Les aérogénérateurs envisagés pour le projet de la Ferme éolienne de Blanzay 2 - Energie sont adaptés pour des vents moyens. Il s'agit d'éoliennes Vestas V162 de 6,8 MW ou bien de Nordex N163 de 5,7 MW de puissance unitaire. Pour ces modèles d'éoliennes, le mât a une hauteur de 118 à 119 m (hauteur au moyeu), le diamètre du rotor est de 162 à 163 m et la hauteur totale est de 200 m en bout de pale.

^{**} Les coordonnées en WGS 84 sont converties à partir des coordonnées en Lambert 93 via geofree.fr, et arrondies au centième de seconde près

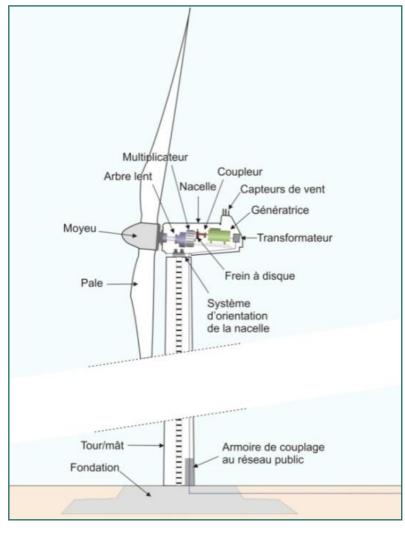


Figure 2 : Schéma simplifié d'un aérogénérateur

Comme l'illustre la Figure 2, de bas en haut, une éolienne se compose :

- → Des fondations de 2,5 à 5 m de profondeur (valeurs théoriques, des études du sol vont être faites afin de déterminer précisément la profondeur des fondations) couvrant une surface bétonnée pouvant aller de 20 à 29 mètres de diamètre ;
- Une nacelle abritant plusieurs éléments fonctionnels :
 - $\circ \quad \text{La génératrice qui transforme l'énergie mécanique de rotation du rotor en énergie électrique };\\$
 - Le multiplicateur ;
 - Le transformateur qui permet d'élever la tension électrique produite au niveau de celle du réseau électrique;
 - Le système de freinage mécanique ;

- Le système d'orientation de la nacelle qui place l'éolienne face au vent pour une production optimale d'énergie;
- Les outils de mesure du vent (anémomètre, girouette);
- Le balisage diurne et nocturne nécessaire à la sécurité aéronautique.

Les principales caractéristiques de ces éoliennes sont :

	V162	N163	
Diamètre rotor – longueur de pales	162 m – 81 m	163 m – 81,5 m	
Puissance nominale	6,8 MW	5,7 MW	
Une régulation de la puissan	ce s'effectuant par variation de l'angle	des pales (régulation pitch)	
Vitesse du rotor	4,3 à 12,1 tours/minutes 6,0 à 11,8 tours/m		
Vitesse de vent de démarrage	3 m/s		
Vitesse de coupure	25 m/s 26 m/s		
Vitesse de redémarrage	23 m/s 25,5 m/s		
Durée de vie théorique	20 ans		

Le système de freinage est à la fois aérodynamique et mécanique. Les trois pales indépendantes les unes des autres peuvent être mises en drapeau en quelques secondes. Le blocage complet du rotor n'est effectué que lorsqu'on utilise l'arrêt d'urgence ou en cas d'entretien (frein à disque mécanique).

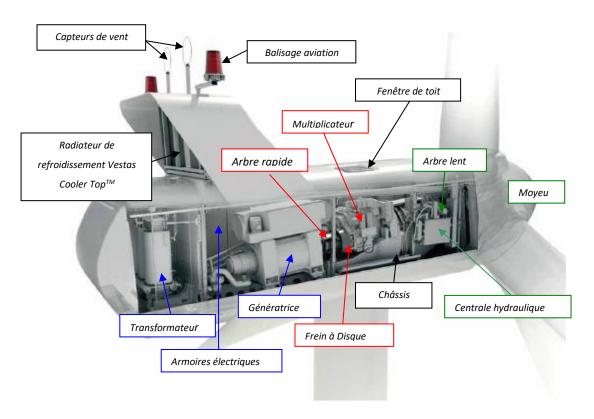


Figure 3 : Schéma technique de la nacelle Vestas V162 - 6,8MW

D'un point de vue aérodynamique, les éoliennes doivent être suffisamment distantes les unes des autres de sorte que les perturbations liées aux courants d'air engendrés par la rotation des pales soient atténuées au niveau de l'éolienne voisine.

Sur le site du projet, les éoliennes seront ainsi implantées à 467 m minimum les unes des autres. Cette distance est suffisante pour rétablir une circulation fluide de l'air.

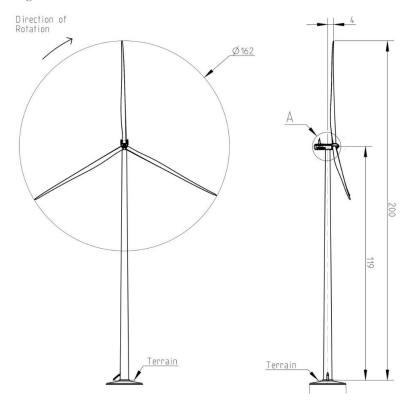
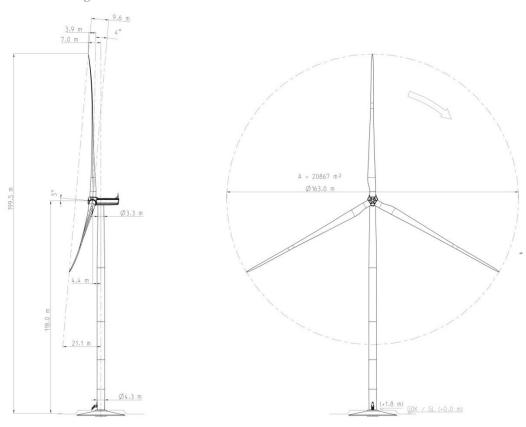
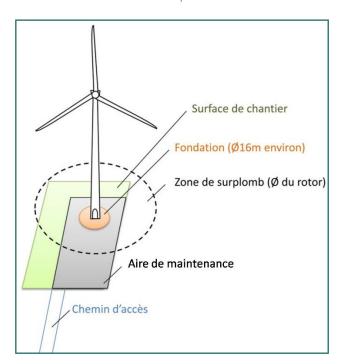



Figure 4 : Dessin d'élévation de l'éolienne Vestas V162-6,8 MW

Figure 5 : Dessin d'élévation de l'éolienne Nordex N163-5,7 MW



4.1.2.3. <u>Les emprises au sol</u>

Plusieurs emprises au sol sont nécessaires pour la construction et l'exploitation des parcs éoliens :

- La surface de chantier est une surface temporaire, durant la phase de construction, destinée aux manœuvres des engins et au stockage au sol des éléments constitutifs des éoliennes.
- La zone de surplomb ou de survol correspond à la surface au sol au-dessus de laquelle les pales sont situées, en considérant une rotation à 360° du rotor par rapport à l'axe du mât.
- La plateforme ou aire de maintenance correspond à une surface permettant le positionnement de la grue destinée au montage et aux opérations de maintenance liées aux éoliennes. Sa taille varie en fonction des éoliennes choisies et de la configuration du site d'implantation.

Figure 6 : Illustration des emprises au sol d'une éolienne (les dimensions sont données à titre d'illustration pour une éolienne d'environ 180m de hauteur)

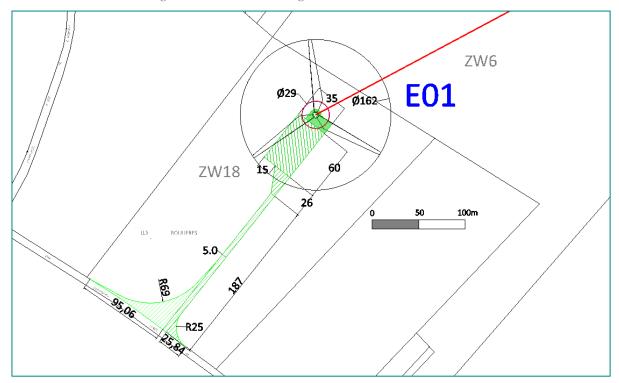
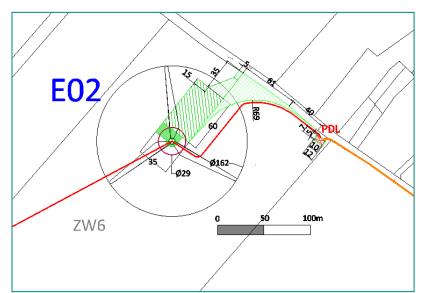
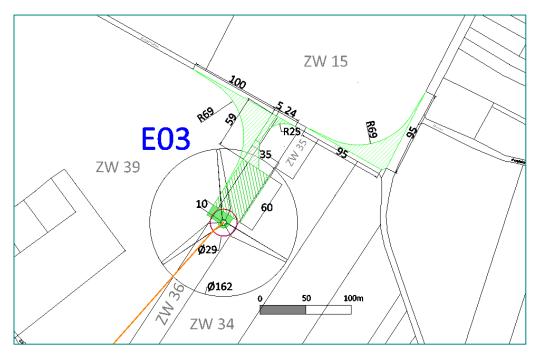
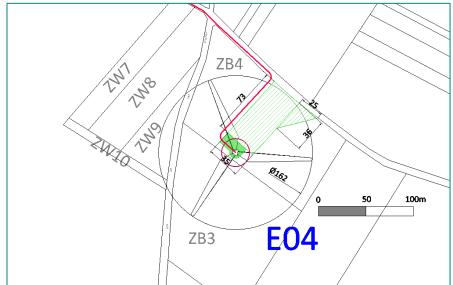
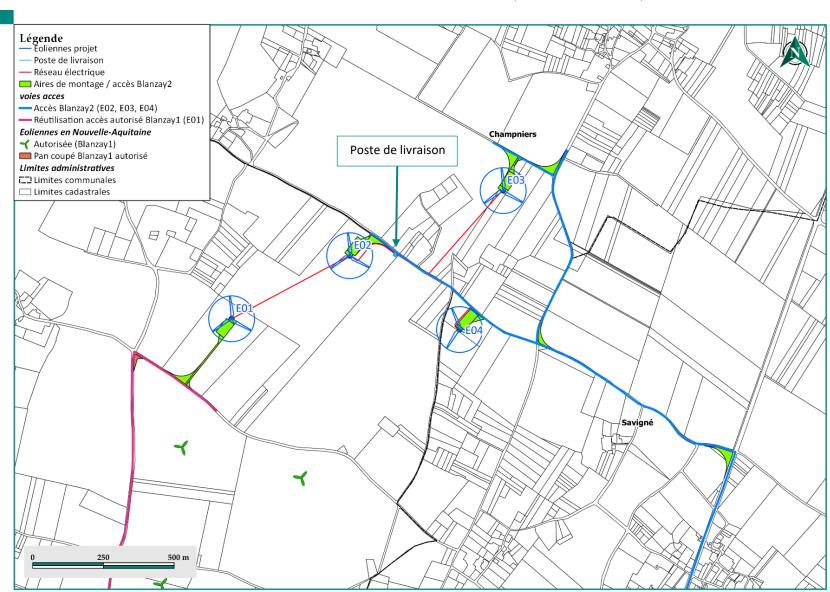





Figure 7 : Aires de montage et d'entretien des éoliennes


4.1.2.4. <u>Les chemins d'accès</u>

Pour accéder à chaque aérogénérateur, des pistes d'accès sont aménagées pour permettre aux véhicules d'accéder aux éoliennes aussi bien pour les opérations de construction du parc éolien que pour les opérations de maintenance liées à l'exploitation du parc éolien :

- ▲ L'aménagement de ces accès concerne principalement les chemins agricoles existants;
- ★ Si nécessaire, de nouveaux chemins sont créés sur les parcelles agricoles.

Durant la phase de construction et de démantèlement, les engins empruntent ces chemins pour acheminer les éléments constituants les éoliennes et leurs annexes.

Durant la phase d'exploitation, les chemins sont utilisés par des véhicules légers (maintenance régulière) ou par des engins permettant d'importantes opérations de maintenance (ex : changement de pale).

Carte 22 : Voies d'accès aux éoliennes - Plan cadastral (en bleu : voie d'accès)

Le transformateur du poste **Eoliennes** source passe la tension de 20 à 90 kv (à titre d'exemple). 0.690 kv Vers le Poste(s) de Poste réseau de livraison source 20 kv distribution PdL Réseau inter-éolien Réseau local Réseau Public Sortie de la tension dans le 20 ky du poste de livraison au 20 kv du transformateur de réseau (ex: 90 kv) l'éolienne au poste de livraison transformateur du poste source

4.1.2.5. <u>Les réseaux électriques</u>

Figure 8 : Schéma de raccordement électrique d'un parc éolien

L'énergie produite dans la génératrice passe par un transformateur situé dans la nacelle (ou dans le mât) qui augmente la tension jusqu'à 20 000 Volts. Ensuite, l'énergie est acheminée au Poste de Livraison (PDL) où la tension reste la même à savoir 20 000 Volts. Du Poste de Livraison au transformateur du Poste Source, la tension est augmentée de 20 kV à 90 kV (donnée à titre d'exemple), cela marque la transition entre le réseau local (20kV) et le réseau public (ex : 90 kV). Par la suite, la tension est distribuée dans le réseau jusqu'aux consommateurs finaux.

Réseau inter-éolien et téléphonique

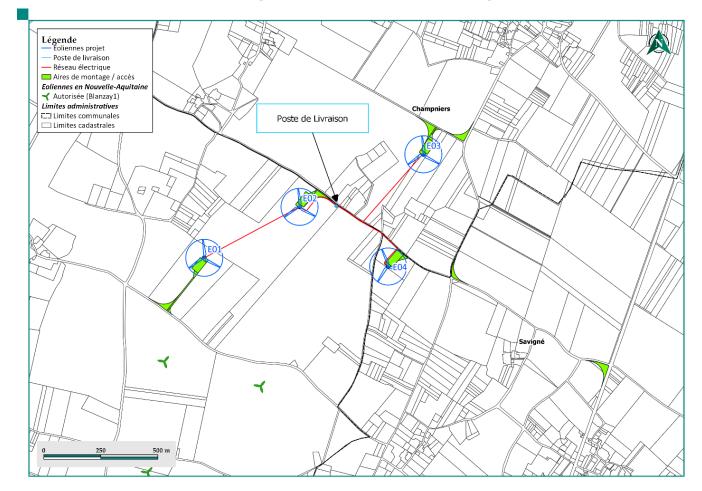
Le réseau inter-éolien permet de relier le transformateur, intégré dans chaque éolienne, au point de raccordement avec le réseau public. Ce réseau comporte également une liaison de télécommunication qui relie chaque éolienne au terminal de télésurveillance. Ces câbles constituent le réseau interne de la centrale éolienne, ils sont tous enfouis à une profondeur minimale de 80 cm.

Ce chapitre a pour but de présenter les caractéristiques électriques principales des ouvrages de raccordement entre les éoliennes jusqu'au poste de raccordement au réseau public de distribution. Il comporte notamment les éléments justifiant de la conformité des liaisons électriques intérieures avec la réglementation en vigueur et nécessaires à l'approbation par le Préfet du projet d'ouvrage privé de raccordement au titre de l'article L. 323-11 du code de l'énergie (Articles 4 et 5 du Décret 2011-1697).

Le tracé de ce réseau qui pourra évoluer en fonction de différentes contraintes sera identifié sur un plan tenu à jour au fur et à mesure des opérations de pose conformément à l'article 6 de l'Arrêté Ministériel du 17 Mai 2001.

Description des ouvrages électriques Haute Tension

Pour le projet éolien porté par « la Ferme éolienne de Blanzay 2 - Energie », il y aura 1 poste de livraison avec 2 points de connexion au réseau public.


L'ensemble des ouvrages électriques installé au sein du projet sera réalisé dans les règles de l'art et conformément à la règlementation et aux normes en vigueur. Ces ouvrages respecteront ainsi les prescriptions techniques, contractuelles et administratives s'y afférant telles que définies par le Décret 2011-1697 et les Arrêtés Ministériels du 17 mai 2001 et du 14 janvier 2013.

De plus, une attention particulière sera portée aux champs électromagnétiques émanant des réseaux électriques en courant alternatif (le champ électrique résultant ne doit pas excéder 5 kV/m et le champ magnétique, 100 μT), et au bruit des équipements des postes de transformation et des lignes électriques, conformément aux articles 12 bis et 12 ter de l'arrêté du 17 Mai 2001.

Conformité et contrôle des ouvrages :

Le maître d'ouvrage s'engage à :

- Appliquer lors de la mise en service des ouvrages d'interconnexion électrique, un contrôle technique prévu à l'article R323-30 du code de l'énergie, conformément à l'arrêté d'application du 14 janvier 2013 (attestation de conformité, organisme technique certifié indépendant, comptes rendus des contrôles effectués);
- Respecter l'arrêté interministériel du 17 mai 2001, fixant les conditions techniques auxquelles doivent satisfaire les distributions d'énergie électrique, notamment pour la construction et l'exploitation de l'installation;

Carte 23 : Localisation du poste de livraison et réseau interne du parc éolien

Tension réseau

La tension de référence (dite nominale) des ouvrages et matériels utilisés est directement dépendante de la tension de raccordement au réseau public de distribution d'électricité. Cette tension est donnée par le gestionnaire de réseau et sera connue seulement au moment de la signature des PTF (Propositions Techniques et Financières) pour le raccordement. Néanmoins, la tension usuelle des réseaux d'électricité pour ces puissances de projet est de 20 kV.

Techniques utilisées

Cette partie vise à décrire la technique de pose retenue pour la réalisation des réseaux électriques HTA et du réseau de fibres optiques assurant la communication entre les éoliennes et les postes de livraisons :

- ▲ Décapage des terres végétales sur une profondeur comprise entre 0,1 à 0,3m, et une largeur de 4 à 6m.
- → Ouverture de la tranchée (soit à la pelle mécanique soit à la trancheuse) :
 - o Profondeur: 0,8 à 1,1m selon la nature du terrain.
 - o Largeur de 0,28 m à 0,45m selon le nombre de câbles,
- → Déroulage des câbles sur un lit de sable (ou sans sable si le câble est renforcé),

- ★ Fermeture et remblai de la tranchée, puis compactage,
- Remise des terres végétales ou finition de surface si sur chemin ou traversée de route.

Les réseaux de câbles électriques HTA et de fibres optiques sont posés conjointement dans la même tranchée. A noter que le réseau de fibres optiques est posé soit avec des renforcements permettant une protection antirongeur, soit par mise sous fourreau type D42. Les fibres optiques posées sont en général des fibres multimodes de qualité OM2 et de dimensions $50/125~\mu m$ (diamètre du cœur de la fibre / diamètre de la gaine optique en verre). Toutefois, l'installation pourrait aussi être réalisée avec des fibres monomode de dimensions $9/125~\mu m$, ou autres dispositifs appropriés.

Par la suite, ces ouvrages de réseaux d'électricité feront l'objet de contrôles techniques spécifiques afin de vérifier leur conformité aux prescriptions techniques qui leur sont applicables. Le contrôle sera réalisé par un organisme technique certifié en qualité, indépendant du maître d'ouvrage et du gestionnaire du réseau, conformément à l'article 13 du Décret 2011-1697. Le contrôle du respect de l'ensemble de ces obligations sera effectué par le Préfet conformément à l'article 14 du Décret cité préalablement.

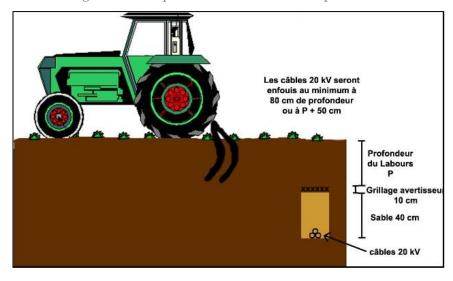


Figure 9 : Exemple de tranchées sous champs labouré

Mise à la terre du parc

Différentes typologies de mise à la terre existent et sont spécifiques à chaque constructeur ou éolienne. Le système de mise à la terre et la section des réseaux (généralement en cuivre) de la Ferme éolienne de Blanzay 2 - Energie seront calculés in fine afin de permettre l'évacuation de la foudre, suivant la méthodologie et standardisation des normes spécifiques applicables.

En France, ces principes sont dictés essentiellement par les normes NF C15-100 et l'UTE C15-106 qui définissent les règles de calculs des sections des divers conducteurs dans le but d'assurer la sécurité, le bon fonctionnement des installations électriques et les besoins normaux des usagers.

Ainsi, l'ensemble de l'installation électrique ainsi que certains éléments pouvant devenir accidentellement conducteurs d'électricité seront raccordés à la terre. Les liaisons équipotentielles et la mise à la terre seront

réalisées conformément à l'article 9 de l'Arrêté du 17 mai 2001 et contrôlées périodiquement par le biais de mesures ou vérifications complémentaires comme défini au sein de l'article 6 de l'Arrêté du 14 Janvier 2013.

Nature des câbles

Le niveau de puissance et la tension transitant au sein de chaque câble sont les deux critères principaux qui définissent la nature des câbles à installer. Même si elle impacte faiblement le choix final, la distance des tronçons des réseaux est un critère secondaire de choix pour la nature des câbles.

Pour ce type de réseau, des câbles de nature ALUMINIUM seront privilégiés en fourniture des entreprises soustraitantes ; et seront cohérents avec les contraintes du site (tension, puissances et distances des tronçons).

Section de câbles

La norme NF C13-200 définit la méthode de calcul des sections minimales de câbles applicable aux installations alimentées en courant alternatif sous une tension nominale supérieure à 1 000 V et inférieur ou égale à 245 kV, les fréquences préférentielles étant 50 et 60 Hz. Ce document est applicable pour les installations de production d'énergie ainsi que les installations industrielles, tertiaires et agricoles.

Afin de déterminer la section de câbles, des hypothèses de pose et de calcul sont définis ci-après :

Hypothèses de pose

Les hypothèses prises en compte sont les conditions les plus défavorables envisageables à savoir une pose de câbles enterrés en régime permanent.

Paramètres	Choix	Coefficient Correcteur
Référence du mode de mode	S1	1,00
Température du sol à 80 cm	20°C	1,00
Résistivité thermique du sol**	85°C.cm/W*	1,06
Distance entre deux câbles	0,5 m	0,90
Facteur de correction total =		0,954

^{* :} correspond à un terrain sec, cas le plus défavorable du terrain pris en considération

Hypothèses de calcul

★ Tension de raccordement : 20 kV

★ Cos Phi = 0,95 pour les échauffements hors court-circuit

^{** :} le terrain est de type argilo-calcaire normal

★ Ame en aluminium

↓ Isolant = Polyéthylène réticulé (PR)

★ Type de câble : Tripolaire

→ Puissance nominale utilisée pour les éoliennes : de 5,7 à 6,8 MW.

Dans une volonté de standardisation des matériels, les sections de câbles sont calculées conformément aux préconisations de la norme NF C13-200.

Le schéma électrique unifilaire fourni en ANNEXE 11, présente la répartition électrique HTA entre le poste de livraison et les éoliennes. Il montre également le schéma des cellules HTA et des différents éléments électriques qui le composent.

Tableau 15 : Résumé des réseaux HTA à créer par tronçon

Projet	Connexion	Tronçon	Longueur de tranchée (m)	Longueur de câbles (m)*	Section des câbles (mm²)
	Connexion 1 Poste de livraison Connexion 2	E01/E02	473	503	150
Poste de		E02/PDL	204	234	2*240
livraison		E03/PDL	533	563	150
		E04/PDL	431	461	150

^{*}longueur du câble = longueur de tranchée + 30m. Il s'agit d'une estimation standard prenant en compte les réserves complémentaires en remontée dans les éoliennes ou le poste de livraison. Certaines tranchées peuvent accueillir plusieurs câbles.

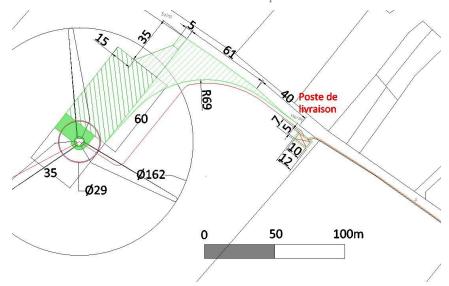
Poste de livraison

Le poste de livraison est un nœud de raccordement de plusieurs éoliennes, concentrant l'électricité fournie par celles-ci via le réseau inter-éolien HTA (20 kV), et organisant son évacuation vers le réseau public d'électricité au travers du poste source local (point d'injection de l'électricité sur le réseau public). Il représente la limite de propriété entre la partie privée des réseaux électriques internes au projet et le réseau public de distribution.

Le poste de livraison contient un ensemble de protection et d'isolement par le biais des disjoncteurs et des sectionneurs assurant la sécurité d'alimentation conformément à l'article 65 de l'Arrêté du 17 Mai 2001.

Un local intérieur séparé par une cloison permet la mise en place des matériels de contrôle -commande (dits SCADA) des projets, permettant notamment une supervision et des interventions à distance via un raccordement au réseau de télécommunications conformément à l'article 17 du décret 2011-1067 et à l'article 55 bis de l'Arrêté du 17 Mai 2001.

Le vide sanitaire du poste recueille les arrivées des différents réseaux pénétrant dans le poste :


- Réseaux HTA inter-éolien ;
- ★ Réseaux HTA du gestionnaire de réseau ;
- ★ Réseaux de fibre optique pour le contrôle-commande du projet.

L'enveloppe du poste peut varier selon le fournisseur. Dans la majorité des cas, elle est souvent réalisée en béton moulé, armé et vibré. Le fond de fouille du poste de livraison est généralement constitué d'un mélange de gravier dont la granulométrie varie de sable permettant un ajustement exact, et dans lequel est déroulé un serpentin de cuivre pour la mise à la terre (MALT).

Cette mise à la terre du poste est assurée par une ceinture équipotentielle mise au niveau du fond de fouille en sous-sol et raccordée en remontée sur un point de connexion intérieur.

Parfois, notamment dans les zones de sismicité le nécessitant ou sur des terrains très peu porteurs ou déstabilisés, le poste de livraison peut être posé sur une « sous-dalle » en béton qui a pour but de répartir les charges du poste de livraison. Dans ce cas, la « sous dalle » béton sera également mise à la terre par l'intermédiaire d'un serpentin de terre inclus dans la sous dalle et/ou en périphérie de celle-ci.

La Ferme éolienne de Blanzay 2 - Energie ne comporte qu'un seul poste de livraison situé en bordure nord de la parcelle ZW6 à proximité de la plateforme de l'éolienne E02. Son impact est donc globalement limité à son emprise au sol de 50 m² (10 m x 5 m).

Carte 24: Plan d'installation du poste de livraison

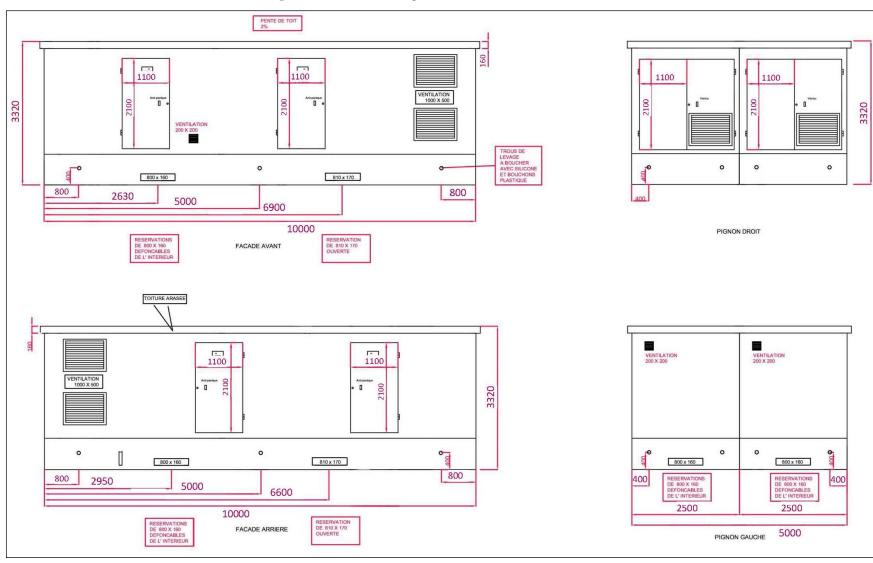


Figure 10 : Schéma d'un poste de livraison (5*10m double)

Réseau électrique externe

Le réseau électrique externe relie le poste de livraison au poste source (réseau public de transport d'électricité). Ce réseau est réalisé par le GRD Gestionnaire du Réseau de Distribution (par exemple : Enedis) ; il est entièrement enterré.

4.1.2.6. Les dispositifs particuliers

Le balisage aéronautique :

Le balisage de l'installation est conforme aux dispositions prises en application des articles L. 6351-6 et L. 6352-1 du code des transports et des articles R. 243-1 et R. 244-1 du code de l'aviation civile.

L'arrêté du 23 avril 2018 (relatif à la réalisation du balisage des éoliennes situées en dehors des zones grevées de servitudes aéronautiques) modifié par l'arrêté du 29 mars 2022, fixe les exigences de réalisation du balisage des éoliennes qui constituent un obstacle à la navigation aérienne.

Le balisage lumineux d'obstacle :

- ★ Sera installé sur toutes les éoliennes,
- ★ Sera assuré de jour par des feux d'obstacle à éclats blancs, sur le sommet de la nacelle,
- ★ Sera assuré de nuit par des feux d'obstacle à éclats rouges, sur le sommet de la nacelle,
- → Sera complété à 45 m de hauteur par des feux d'obstacles basse intensité à éclat rouge (en raison de la hauteur totale de l'éolienne supérieure à 150 m),
- Assure la visibilité de l'éolienne dans tous les azimuts (360°),
- ★ Sera synchronisé de jour comme de nuit.

Figure 11 : Photographie d'un exemple de balisage aéronautique

Le balisage des prescriptions :

Conformément à l'article 14 de l'arrêté du 26 août 2011, modifié par l'arrêté du 22 juin 2020, relatif aux éoliennes, un balisage d'information des prescriptions à observer par les tiers est affiché sur le chemin d'accès de chaque aérogénérateur et sur les postes de livraison.

Les prescriptions figurant sur les panneaux sont :

- Les consignes de sécurité à suivre en cas de situation anormale,
- ★ Interdiction de pénétrer dans l'aérogénérateur,
- Mise en garde face aux risques d'électrocution,
- ★ Mise en garde face au risque de chute de glace.

Figure 12 : Exemple de panneau d'affichage des prescriptions

4.2. Fonctionnement de l'installation

4.2.1. Principe de fonctionnement d'un aérogénérateur

Les principaux éléments constitutifs de l'aérogénérateur sont :

Tableau 16 : Principaux éléments constitutifs des éoliennes V162 et N163

Principaux Elément de l'installation	Fonction	Description		
Fondation	Ancrer et stabiliser l'éolienne dans le sol.	Le massif de fondation est composé de béton armé et conçu pour répondre aux prescriptions de l'Eurocode 2. Les fondations ont entre 2.5 et 5 mètres d'épaisseur pour un diamètre de l'ordre de 20 à 29 mètres (les dimensions précises seront définies une fois l'étude géotechnique réalisée pour chaque éolienne). Cette structure doit répondre aux calculs de dimensionnement de massifs qui prennent en compte les caractéristiques suivantes : - Le type d'éolienne ; - La nature des sols ; - Les conditions météorologiques extrêmes ; - Les conditions de fatigue.		
Mât	Supporter la nacelle et le rotor.	Le mât de l'éolienne est constitué de plusieurs sections tubula en acier, de plusieurs dizaines de millimètres d'épaisseur et forme tronconique, qui sont assemblées entre elles par brid Fixée par une bride aux tiges d'ancrage disposées dans le ma de fondation, la tour est autoportante. La hauteur de la tour, ainsi que ses autres dimensions, sont relation avec le diamètre du rotor, la classe des vents, la topolo du site et la puissance recherchée. La tour permet le cheminement des câbles électriques puissance et de contrôle et abrite : - une échelle d'accès à la nacelle ; - un monte-charge ; - une armoire de contrôle et des armoires de batter d'accumulateurs (en point bas) ; - les cellules de protection électriques. V162 N163 Diamètre de base du mât 6,2 m 4,1 m		

Principaux Elément de l'installation	Fonction	Description
		Hauteur du mât (au moyeu) 119 m 118 m
Nacelle	■ Supporter le rotor ■ Abriter le dispositif de conversion de l'énergie mécanique en électricité (génératrice, etc.) ainsi que les dispositifs de contrôle et de sécurité	La nacelle se situe au sommet de la tour et abrite les composants mécaniques, hydrauliques, électriques et électroniques, nécessaires au fonctionnement de l'éolienne (voir figure ci-après). Elle est constituée d'une structure métallique habillée de panneaux en fibre de verre et est équipée de fenêtres de toit permettant d'accéder à l'extérieur. Ses dimensions sont les suivantes : - Hauteur : 4,35 m - Largeur : 4,18 m - Longueur : 18,3 m La nacelle n'est pas fixée de façon rigide à la tour. La partie intermédiaire entre la tour et la nacelle constitue le système d'orientation, appelé « yaw system », permettant à la nacelle de s'orienter face au vent.
Rotor / pales	Capter l'énergie mécanique du vent et la transmettre à la génératrice	Les rotors sont composés de trois pales fixées au moyeu via des couronnes à deux rangées de billes et double contact radial. La rotation du rotor permet de convertir l'énergie cinétique du vent en énergie mécanique de rotation. Elle est transmise à la génératrice via le multiplicateur. Les pales peuvent pivoter d'environ 90 degrés sur leur axe grâce à des vérins hydrauliques montés dans le moyeu. La position des pales est alors ajustée par un système d'inclinaison, appelé « Vestas Pitch System ». Ainsi, les variations de vitesse de vents sont constamment compensées par l'ajustement de l'angle d'inclinaison des pales. Le « Vestas Pitch System » est conçu pour optimiser au maximum la production de l'éolienne. Dans le cas où la vitesse de vent devient trop importante risquant d'amener une usure prématurée des divers composants ou de conduire à un emballement du rotor, le « Vestas Pitch System » ramène les pales dans une position où elles offrent le moins de prise au vent, dite « en drapeau », conduisant à l'arrêt du rotor (freinage aérodynamique). Ici le rotor est caractérisé par les données suivantes :

Principaux Elément de l'installation	Fonction	Description		
			Vestas V162	Nordex N163
		Diamètre de rotor	162 m	163 m
		Surface balayée	20 612 m²	20 867 m ²
		Plage de rotation opératoire	4,3 – 12,1 tr/min	6,0 – 11,8 tr/min
		Les pales sont caracté	risées par les données	suivantes :
			Vestas V162	Nordex N163
		Longueur	79,3 m	79,7 m
		Une pale peut pesei Vestas).	r jusqu'à 22,8 tonne	s (cas du modèle
Multiplicateur	Multiplier la vitesse de rotation issue de l'arbre lent	epicycloidal et de deux arbres paralleles à roues dentees à		
Générateur et transformateur	 Produire de l'énergie électrique à partir d'énergie mécanique. Elever la tension de sortie de la génératrice avant l'acheminement du courant électrique par le réseau 	donc à puissance méc Le générateur, de typ en énergie électrique quadripolaire à roto stator au démarrage.	anique fluctuante). e asynchrone, convert . Il s'agit d'un généra r bobiné avec alime Il délivre deux niveau courant alternatif) q	d'un système à vitesse variable (et tit l'énergie mécanique ateur triphasé, du type entation électrique du x de tension différents ui sont dirigés vers le V à 20 000 V.
Poste de livraison	Adapter les caractéristiques du courant électrique à l'interface entre le réseau privé et le réseau public.	réseau électrique de	distribution (le GRD G	t ensuite raccordées au Gestionnaire de Réseau RTE) via un ou plusieurs

Principaux Elément de l'installation	Fonction	Description
		postes de livraison. Ces postes font ainsi l'interface entre les
		installations et le réseau électrique.
		Chaque poste est équipé d'appareils de comptage d'énergie
		indiquant l'énergie soutirée au réseau mais également celle
		injectée. Il comporte aussi la protection générale dont le but est
		de protéger les éoliennes et le réseau inter-éolien en cas de défaut
		sur le réseau électrique amont.
		Les liaisons électriques entre éoliennes et poste(s) de livraison
		sont assurées par des câbles souterrains.
		Les dimensions du poste de livraison sont de 10 x 5m.

Les instruments de mesure de vent placés au-dessus de la nacelle conditionnent le fonctionnement de l'éolienne. Grâce aux informations transmises par la girouette qui détermine la direction du vent, le rotor se positionnera pour être continuellement face au vent.

Les pales se mettent en mouvement lorsque l'anémomètre (positionné sur la nacelle) indique une vitesse de vent d'environ 10 km/h et c'est seulement à partir de 12 km/h que l'éolienne peut être couplée au réseau électrique. Le rotor et l'arbre dit « lent » transmettent alors l'énergie mécanique à basse vitesse (entre 4,3 – 12,1 tr/min pour la V162 et 6,0 – 11,8 tr/min pour la N163) aux engrenages du multiplicateur, dont l'arbre dit « rapide » tourne environ 100 fois plus vite que l'arbre lent. Certaines éoliennes sont dépourvues de multiplicateur et la génératrice est entraînée directement par l'arbre « lent » lié au rotor. La génératrice transforme l'énergie mécanique captée par les pales en énergie électrique.

La puissance électrique produite varie en fonction de la vitesse de rotation du rotor. Dès que le vent atteint environ 45 km/h à hauteur de nacelle, l'éolienne fournit sa puissance maximale. Cette puissance est dite « nominale ».

L'électricité est produite par la génératrice avec une tension de 480 à 690 V. La tension est ensuite élevée jusqu'à 20 000 V par un transformateur placé dans chaque éolienne pour être ensuite injectée dans le réseau électrique public.

Lorsque la mesure de vent, indiquée par l'anémomètre, atteint des vitesses de plus de 80 km/h, l'éolienne cesse de fonctionner pour des raisons de sécurité. Deux systèmes de freinage permettront d'assurer la sécurité de l'éolienne :

- Le premier par la mise en drapeau des pales, c'est-à-dire un freinage aérodynamique : les pales prennent alors une orientation parallèle au vent ;
- ★ Le second par un frein mécanique sur l'arbre de transmission à l'intérieur de la nacelle.

4.2.2. Sécurité de l'installation

L'installation respecte la réglementation applicable en vigueur en matière de sécurité. Elle est conforme aux prescriptions de l'arrêté ministériel relatif aux installations soumises à autorisation au titre de la rubrique 2980 des installations classées relatives à la sécurité de l'installation ainsi qu'à l'ensemble des lois et normes qui assurent la sécurité de l'installation.

La description des différents systèmes de sécurité et de surveillance de l'installation sera effectuée au stade de l'analyse préliminaire des risques, dans la partie 7 « Analyse préliminaire des risques » de l'étude de dangers.

L'aérogénérateur :

- Les sociétés VESTAS et NORDEX attestent de la conformité de leurs aérogénérateurs à l'ensemble des dispositions contenues dans l'Arrêté du 26 août 2011, modifié par les arrêtés du 22 juin 2020 et du 10 décembre 2021, relatives à la sécurité de l'installation.
- Les sociétés VESTAS et NORDEX attestent du respect des principales normes applicables à l'installation d'aérogénérateurs : La liste des codes et standards appliqués pour la construction des éoliennes Vestas et Nordex, présentée ci-après, n'est pas exhaustive (il y a en effet des centaines de standards applicables). Seuls les principaux standards sont présentés ci-dessous.
 - L'aérogénérateur respecte la Directive Machine 2006/42/CE.
 - La norme IEC61400-1 intitulée « Exigence pour la conception des aérogénérateurs » fixe les prescriptions propres à fournir « un niveau approprié de protection contre les dommages résultant de tout risque durant la durée de vie » de l'éolienne. Ainsi, la nacelle, le nez, les fondations et la tour répondent au standard : IEC61400-1. Les pales respectent le standard IEC61400-1 ; 12 ; 23.
 - La génératrice est construite suivant le standard IEC60034.
 - o La conception du multiplicateur répond aux règles fixées par la norme ISO81400-4.
 - La protection foudre de l'éolienne répond au standard IEC61400-24 et aux standards non spécifiques aux éoliennes comme IEC62305-1, IEC62305-3 et IEC62305-4.
 - Les éoliennes répondent aux réglementations qui concernent les ondes électromagnétiques, notamment la Directive 2004/108/EC du 15 décembre 2004.
 - Les éoliennes sont protégées contre la corrosion due à l'humidité de l'air. Le traitement anticorrosion des éoliennes répond à la norme ISO 12944.

La Certification de type (certifications CE) et la déclaration de conformité attestent la conformité de l'aérogénérateur aux standards et directives applicables.

<u>Le balisage :</u>

Le balisage aéronautique :

L'arrêté du 23 avril 2018 (relatif à la réalisation du balisage des éoliennes situées en dehors des zones grevées de servitudes aéronautiques) modifié par l'arrêté du 29 mars 2022, fixe les exigences de réalisation du balisage des éoliennes qui constituent un obstacle à la navigation aérienne.

Le balisage lumineux d'obstacle :

★ Sera installé sur toutes les éoliennes,

★ Sera assuré de jour par des feux à éclats blancs,

★ Sera assuré de nuit par des feux à éclats rouges,

✓ Sera complété à 45 m de hauteur par des feux d'obstacles basse intensité à éclat rouge (en raison de la hauteur totale de l'éolienne supérieure à 150 m),

Assure la visibilité de l'éolienne dans tous les azimuts (360°),

★ Sera synchronisé de jour comme de nuit.

Le balisage des prescriptions :

Conformément à l'article 14 de l'arrêté du 26 août 2011, modifié par l'arrêté du 22 juin 2020, relatif aux installations de production d'électricité utilisant l'énergie mécanique du vent, un balisage d'information des prescriptions à observer par les tiers sont affichées sur le chemin d'accès de chaque aérogénérateur et sur le poste de livraison.

Les prescriptions figurant sur les panneaux sont :

Les consignes de sécurité à suivre en cas de situation anormale,

Interdiction de pénétrer dans l'aérogénérateur,

Mise en garde face aux risques d'électrocution,

Mise en garde face au risque de chute de glace.

La fondation:

Les fondations répondent au standard IEC1400-1.

Leur dimensionnement respecte les codes de construction pour l'Europe, les Eurocodes.

Les principaux Eurocodes utilisés pour le calcul des fondations sont :

★ Eurocode 2 : Calcul des structures en béton

★ Eurocode 7 : Calcul géotechnique

4.2.3. Opérations de maintenance de l'installation

4.2.3.1. <u>Mode d'exploitation</u>

Conduite du système

Les éoliennes sont des équipements de production d'énergie qui sont disposés à l'écart de zones urbanisées et qui ne nécessitent pas de présence permanente de personnel. Bien que certaines opérations nécessitent des interventions sur site, les éoliennes sont surveillées et pilotées à distance.

Pour cela, les installations sont équipées d'un système SCADA (Supervisory Control And Data Acquisition) qui permet le pilotage à distance à partir des informations fournies par les capteurs. Les parcs éoliens sont ainsi reliés à des centres de télésurveillance permettant le diagnostic et l'analyse de leur performance en permanence, ainsi que certaines actions à distance. Ce dispositif assure la transmission de l'alerte en temps réel en cas de panne ou de simple dysfonctionnement.

Il permet également de relancer aussitôt les éoliennes si les paramètres requis sont validés et les alarmes traitées. C'est notamment le cas lors des arrêts de l'éolienne par le système normal de commande (en cas de vent faible, de vent fort, de température extérieure trop élevée ou trop basse, de perte du réseau public, ...).

Cependant, en cas d'arrêts liés à des déclenchements de capteurs de sécurité (déclenchement VOG, déclenchement détecteur d'arc ou d'incendie, pression basse huile, ...), une intervention humaine sur l'éolienne est nécessaire pour examiner l'origine du défaut et acquitter l'alarme avant de pouvoir relancer un démarrage.

En cas d'intervention, des équipes de techniciens sont réparties sur le territoire afin de pouvoir réagir rapidement. Les interventions sont toujours faites par une équipe d'au moins deux personnes.

Afin d'assurer la sécurité des équipes intervenantes, un dispositif de prise de commande locale de l'éolienne est disposé en partie basse de la tour. Ainsi, lors des interventions sur l'éolienne, les opérateurs basculent ce dispositif sur « commande locale » ce qui interdit toute action pilotée à distance.

Toute intervention dans la nacelle n'est réalisée qu'après mise à l'arrêt de la machine. De plus, des dispositifs de sectionnement sont répartis sur l'ensemble de la chaîne électrique afin de pouvoir isoler certaines parties et protéger ainsi le personnel intervenant.

Au-delà de certaines vitesses de vent, les interventions sur les équipements ne sont pas autorisées.

Formation des personnels

Les personnels intervenant sur les éoliennes, tant pour leur montage, que pour leur maintenance, sont des personnels formés au poste de travail et informés des risques présentés par l'activité.

Toutes les interventions (pour montage, maintenance, contrôles) font l'objet de procédures qui définissent les tâches à réaliser, les équipements d'intervention à utiliser et les mesures à mettre en place pour limiter les risques d'accident. Des check-lists sont établies afin d'assurer la traçabilité des opérations effectuées.

4.2.3.2. <u>Modalités de maintenance</u>

Entretien préventif du matériel :

L'inspection et l'entretien du matériel sont effectués par des opérateurs formés pour ces interventions.

La liste des opérations à effectuer sur les diverses machines ainsi que leur périodicité est définie par des procédures. Les principaux contrôles effectués sont présentés ci-après.

Tableau 17 : Opérations d'entretien et de contrôle du matériel

Composants	Opérations				
Etat général	Vérification de la propreté de l'intérieur de l'éolienne				
	Vérification qu'aucun matériau combustible ou inflammable n'est entreposé dans l'éolienne (tous les 6 mois, d'après l'arrêté du 26 août 2011)				
Moyeu	Inspection visuelle du moyeu				
	Vérification des boulons entre le moyeu et les supports de pale*				
	Vérification des boulons maintenant la coque du moyeu				
Pales	Vérification des roulements et du jeu				
	Vérification des joints d'étanchéité				
	Inspection visuelle des pales, de l'extérieur et de l'intérieur (tous les 6 mois)				
	Vérification des boulons de chaque pale*				
	Vérification des bruits anormaux				
	Vérification des bandes paratonnerres				
Système de transfert de courant foudre Moyeu / nacelle	Vérification des boulons et de l'absence d'impacts de foudre.				
Arbre principal	Vérification des boulons fixant l'arbre principal et le moyeu*				
	Inspection visuelle des joints d'étanchéité				
	Vérification des bruits anormaux et des vibrations				
	Vérification du fonctionnement du système de lubrification				
	Vérification des dommages au niveau des boulons de blocage du rotor				
Système	Vérification des boulons fixant le haut du palier d'orientation et la tour*				
d'orientation de la nacelle (Yaw	Vérification des bruits anormaux				
system)	Vérification du système de lubrification				
Tour	Vérification de l'état du béton à l'intérieur et à l'extérieur de la tour*				
	Vérification des boulons entre la partie fondation et la tour, entre les sections de la tour et sur l'échelle*				
	Vérification des brides et des cordons de soudure				
	Vérification des plateformes				
	Vérification du câble principal				
Bras de couple	Vérification boulons				
	Vérification et serrage de la connexion à la terre				
Système d'inclinaison des	Vérification des boulons du cylindre principal et du bras de manivelle				

pales (Vestas Pitch System)	Vérification des boulons de l'arbre terminal et des roulements
Multiplicateur	Changement d'huile et nettoyage du multiplicateur si nécessaire
	Vérification du niveau sonore lors du fonctionnement du multiplicateur
	Vérification des joints, de l'absence de fuite, etc
	Vérification d'absence de fuites au niveau des points de lubrification
	Vérification des capteurs de débris
Huile du	Vérification du niveau d'huile
multiplicateur	Vérification des composants du bloc hydraulique et des pompes
Système de	Vérification des étriers, des disques et des plaquettes de freins
freinage	Inspection des entrées et des sorties de tuyaux
Générateur	Vérification des câbles électriques dans le générateur
	Vérification des fuites de liquides de refroidissement et de graisse
	Lubrification des roulements
Système de	Vérification du fonctionnement des pompes à eau
refroidissement par eau	Vérifications des tubes et des tuyaux
pai caa	Vérification du niveau de liquide de refroidissement
Vestas Cooler Top™	Vérification boulons
Système hydraulique	Vérification d'absence de fuites dans la nacelle, l'arbre principal et les pompes
Onduleur	Vérification du fonctionnement de l'onduleur.
Capteur de vent et balisage aérien	Vérification du bon fonctionnement du balisage aérien et inspection visuelle du capteur de vitesse de vent.
Nacelle	Vérification boulons
	Vérification d'absence de fissures autour des raccords
	Vérification des points d'ancrage et des fissures autour de ceux-ci
Extérieur	Vérification de la protection de surface
	Nettoyage des têtes de boulons et d'écrous, des raccords, etc.
Transformateur	Inspection mécanique et électrique du transformateur
Sécurité générale	Inspection des câbles électriques
	Inspection du système de mise à la terre

^{*}Ces vérifications sont effectuées au bout de trois mois, puis d'un an de fonctionnement, puis tous les trois ans, conformément à l'article 18 de l'arrêté du 26 août 2011, modifié par l'arrêté du 22 juin 2020.

Ces opérations de maintenance courante seront répétées lors de l'inspection après la première année de fonctionnement, puis régulièrement selon le calendrier de maintenance.

Les opérations de maintenance supplémentaires sont présentées ci-après.

	Composants	Opérations				
	Moyeu	Vérification de l'état de la fibre de verre				
		Vérification des joints d'étanchéité				
		Vérification de la fonctionnalité des trappes d'accès et de leurs verrous				
	Pales	Vérification des tubes de graissage et du bloc de distribution de graisse				
		Vérification du niveau de graisse dans les collecteurs de graisse et remplacement s'ils sont pleins				
		Remplissage du distributeur de graisse				
	Système de	Vérification du câble connectant les bandes anti-foudre				
	transfert de courant foudre	Vérification des amortisseurs d'usure				
	Moyeu / nacelle	Vérification des bandes anti-foudre				
	Système	Vérification du bon fonctionnement du système d'inclinaison des pales				
	d'inclinaison des pales (Vestas	Vérification de la pression des accumulateurs				
	Pitch System)	Vérification de la tension des fixations des accumulateurs				
		Vérification des boulons				
		Vérification des pistons des vérins hydrauliques				
	Arbre principal	Vérification et lubrification des roulements principaux tous les 5 ans				
ent		Vérification de l'ajustement des capteurs RPM				
de fonctionnement		Lubrification des boulons de blocage du rotor				
ction	Bras de couple	Vérification des boulons entre le bras de couple et le bâti tous les 4 ans				
e fon	Multiplicateur	Vérification et remplacement (si nécessaire) des filtres à air				
ée		Remplacement des filtres à air tous les 10 ans				
e anr		Remplacement du système de détection de particules tous les 10 ans				
hadu		Vérification des flexibles de drainage. Replacement si nécessaire.				
rès c		Remplacement des flexibles de drainage tous les 10 ans				
on ap		Remplacement des tuyaux tous les 7 ans				
Inspection après chaque ann		Inspection des boulons du système d'accouplement entre le multiplicateur et l'arbre principal tous les 4 ans				
		Extraction d'un échantillon d'huile pour analyse				
	Système de	Vérification du câblage des capteurs d'usure et de chaleur				
	freinage	Remplacement des plaquettes de freins tous les 7 ans				

Générateur	Vérification du bruit des roulements				
	Vérification du système de graissage automatique				
	Vérification su système de refroidissement				
Système de refroidissement par eau	Remplacement du liquide de refroidissement tous les 5 ans				
Système	Vérification des niveaux d'huile et remplacement si nécessaire				
hydraulique	Extraction d'un échantillon d'huile pour analyse				
	Changement d'huile selon les rapports d'analyse				
	Remplacement des filtres (tous les ans, tous les 2 ans ou tous les 4 ans, selon le filtre)				
	Remplacement des filtres (tous les ans, tous les 2 ans ou tous les 4 ans, selon le filtre)				
	Contrôle des flux et de la pression				
	Vérification de la pression dans le système de frein				
Vestas Cooler Top™	Inspection visuelle du Vestas Cooler Top™ et des systèmes parafoudres				
Onduleur	Vérification du bon fonctionnement de l'onduleur				
	Remplacement des différents filtres des ventilateurs				
	Remplacement des différents ventilateurs tous les 5 ans				
	Remplacement de la batterie tous les 5 ans				
Capteur de vent et balisage aérien	Inspection visuelle du capteur de vitesse de vent et du bon fonctionnement du balisage.				
Nacelle	Changement des filtres à air				
	Changement des batteries des processeurs				
Tour	Changement des filtres de ventilation contaminés				
	Maintenance de l'élévateur de personnes				
Système de détection d'arc électrique	Test du capteur de détection d'arc électrique du jeu de barres et dans la salle du transformateur				
Système	Lubrification de la Couronne d'orientation				
d'orientation nacelle (Yaw	Vérification du niveau d'huile des motoréducteurs, et remplissage si besoin				
System)	Changement de l'huile des motoréducteurs tous les 10 ans				
	Vérification et ajustement du couple de freinage				
Armoire de	Test des batteries				
contrôle en pied de tour	Remplacement des batteries de secours tous les 5 ans				
de tour	Remplacement des radiateurs en cas de défaillance				
Sécurité générale	Test des boutons d'arrêt d'urgence				

Test d'arrêt en cas de survitesse

Vérification des équipements de sauvetage

Vérification de la date d'inspection des extincteurs

Test des détecteurs de fumée (si installés)

Vérification du système antichute

Contrôles réglementaires périodiques

Les contrôles réglementaires concernent les installations électriques, les équipements et accessoires de levage ou les équipements sous pression (accumulateurs hydropneumatiques). Ils sont réalisés par des organismes agréés.

Le matériel incendie est contrôlé périodiquement par le fabricant du matériel ou un organisme extérieur.

Maintenance curative

Il s'agit des opérations de maintenance réalisées à la suite de défaillances de matériels ou d'équipements (ex : remplacement d'un capteur défaillant, ajout de liquide de refroidissement faisant suite à une fuite, ...). Ces opérations sont faites à la demande, dès détection du dysfonctionnement, de façon à rendre l'équipement à nouveau opérationnel.

4.2.4. Stockage et flux de produits dangereux

Conformément à l'article 16 de l'arrêté du 26 août 2011, modifié par l'arrêté du 22 juin 2020, aucun matériel inflammable ou combustible ne sera stocké au sein de la ferme éolienne de Blanzay 2 - Energie.

4.2.5. Procédure en cas d'incident

Capteurs:

Les éoliennes exploitées par la société Volkswind sont équipées des capteurs/détecteurs nécessaires répondant aux demandes d'ICPE (voir chapitre sur les fonctions de sécurité).

Ces dispositifs sont implantés dans les machines selon les normes EN et NF et subissent des tests périodiques et fonctionnels particuliers et adaptés.

Leurs rôles sont de détecter des anomalies survenues au cours de l'exploitation d'une éolienne. En cas d'entrée en fonctionnement anormal de l'éolienne, l'automate de l'éolienne génère une alarme spécifiant le type d'événement : incendie (détecteur de fumée), survitesse (rotor ou génératrice s'emballe), risque de glace/givre (déducteur ou calculateur différentiel).

Enfin, l'alarme est transmise aux opérateurs (constructeur et exploitant) via la voie internet (Email) ou SMS/Appel téléphonique.

La télésurveillance : système SCADA

C'est le système informatique qui permet de visualiser les paramètres techniques dans une éolienne. Plusieurs capteurs/sondes de température y sont reliés ce qui permet à l'opérateur de contrôler l'état d'une éolienne à distance et d'interagir avec elle (arrêt/mise en pause ou redémarrage si besoin la machine).

Centre Monitoring

Ce service est proposé par le constructeur de l'éolienne. Les opérateurs surveillent 24h/24 et 7jours/7 les éoliennes du constructeur à l'échelle mondiale. En cas d'événement anormal, une vérification des paramètres techniques est réalisée afin de lever le doute. Si nécessaire, une équipe peut être envoyée sur site pour lever visuellement le doute.

En cas d'alerte (feu ou survitesse), l'opérateur arrête immédiatement la machine pour la mettre en sécurité et enclenche la procédure d'information à l'exploitant et/ou aux secours si nécessaire.

VOLKSWIND Opération & Maintenance

La Ferme Eolienne délègue le service Opération & Maintenance à VOLKSWIND.

Une équipe qualifiée est d'astreinte 24h/24 et 7jours/7. Elle est chargée de gérer l'exploitation technique des éoliennes.

Le personnel, basé en France et en Allemagne, est en mesure de se connecter en permanence au SCADA des parcs éoliens et réalise la surveillance à distance en redondance avec les constructeurs.

Cette équipe est joignable en permanence sur un numéro générique d'exploitation qui figure sur les panneaux d'avertissement à proximité de chaque éolienne en exploitation ce qui permet à un tiers, témoin d'un problème de fonctionnement, de contacter directement l'exploitant.

Ce numéro est également communiqué à tous les acteurs principaux du site en exploitation tel que : les constructeurs, sous-traitants électriques, le GRD Gestionnaire de Réseau de Distribution (par exemple : ENEDIS), SDIS, etc. Tous les appels téléphoniques seront transférés à une personne en charge qui traitera la demande en fonction de la nature de l'événement survenu et sera responsable de prévenir les services de secours dans les 15mn suivant l'entrée en fonctionnement anormal de l'éolienne.

Service Départemental d'Incendie et de Secours (SDIS)

C'est le service compétent à qui l'alerte doit être transmise en cas de nécessité. Ce service va mobiliser les moyens humains et techniques nécessaires en cas d'intervention selon ses propres procédures.

Un travail en amont sera réalisé avec le SDIS concerné par le projet afin d'identifier les informations pratiques du site éolien tel que : identification du parc, nombre et type d'éolienne, localisation de l'installation, des accès

possibles, numéro de l'exploitant et des intervenants possibles, etc. afin de garantir les meilleures conditions possibles pour l'intervention des secours (rapidité, mobilisation des bons moyens d'intervention, etc.).

Le SDIS est informé des moyens déjà à disposition dans les éoliennes en cas d'intervention :

- ★ Les extincteurs portatifs à disposition dans la nacelle et en bas de la tour.
- ★ Kit d'évacuation en hauteur par la trappe et palan dans la nacelle.
- ▲ La disposition des boutons d'Arrêt d'Urgence dans l'éolienne.
- Numéro du centre de conduite du GRD Gestionnaire de Réseau de Distribution -> couper l'alimentation du Poste de Livraison à distance.

En accord avec le SDIS, des consignes types sont indiquées sur site permettant d'identifier clairement les éléments d'information à donner aux secours lors d'un appel d'urgence, via le <u>numéro 18</u> (type d'incidence, accident avec personne ou non, incendie, etc.). Ainsi le SDIS sera en mesure de mobiliser les moyens adéquates : pompiers, GRIMP, évacuation en hélicoptère ou tout simplement mise en sécurité du périmètre s'il n'y a pas de possibilité /nécessité d'intervenir dans les éoliennes.

Deux centres de secours SDIS sont situés à proximité du site du projet : il s'agit des Centres d'Incendie et de Secours (CIS) de Charroux et de Civray. Le temps d'intervention estimé est de 8 minutes.

Procédure d'urgence

C'est un document rédigé par le SDIS, en collaboration avec l'exploitant au moment de la mise en service du site, comportant les recommandations d'intervention en fonction du type d'incident. Il s'agit d'un document propre à chaque SDIS.

Les consignes de sécurité aux personnels du SDIS et du site y sont identifiées.

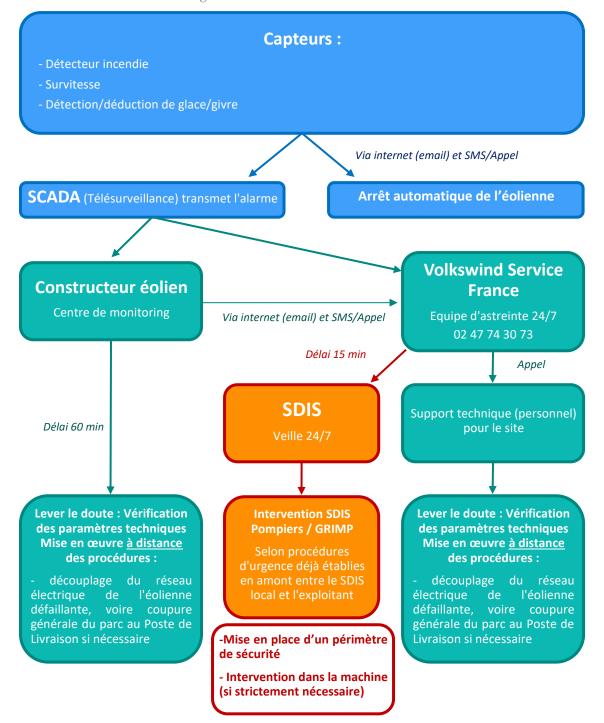


Figure 13 : Procédure en cas d'incident

4.3. Fonctionnement des réseaux de l'installation

4.3.1. Raccordement électrique

Le réseau électrique est décrit précédemment dans la partie 4.1.2.5.

4.3.2. <u>Autres réseaux</u>

La Ferme éolienne de Blanzay 2 - Energie ne comporte aucun réseau d'alimentation en eau potable ni aucun réseau d'assainissement. De même, les éoliennes ne sont reliées à aucun réseau de gaz.

5. Identification des potentiels de dangers de l'installation

Ce chapitre de l'étude de dangers a pour objectif de mettre en évidence les éléments de l'installation pouvant constituer un potentiel danger, que ce soit au niveau des éléments constitutifs des éoliennes, des produits contenus dans l'installation, des modes de fonctionnements, etc.

L'ensemble des causes externes à l'installation pouvant entraîner un phénomène dangereux, qu'elles soient de nature environnementale, humaine ou matérielle, seront traitées dans l'analyse de risques.

5.1. Potentiels de dangers liés aux produits

L'activité de production d'électricité par les éoliennes ne consomme pas de matières premières, ni de produits pendant la phase d'exploitation. De même, cette activité ne génère pas de déchet, ni d'émission atmosphérique, ni d'effluent potentiellement dangereux pour l'environnement.

Les produits identifiés dans le cadre de la Ferme éolienne de Blanzay 2 - Energie sont utilisés pour le bon fonctionnement des éoliennes, leur maintenance et leur entretien :

- → Produits nécessaires au bon fonctionnement des installations (graisses et huiles de transmission, huiles hydrauliques pour systèmes de freinage...), qui une fois usagés sont traités en tant que déchets industriels spéciaux.
- → Produits de nettoyage et d'entretien des installations (solvants, dégraissants, nettoyants...) et les déchets industriels banals associés (pièces usagées non souillées, cartons d'emballage...).

Conformément à l'article 16 de l'arrêté du 26 août 2011, modifié par l'arrêté du 22 juin 2020, relatif aux installations éoliennes soumises à autorisation, aucun produit inflammable ou combustible n'est stocké dans les aérogénérateurs ou le(s) poste(s) de livraison.

5.1.1. <u>Inventaire des produits</u>

Les substances ou produits chimiques mis en œuvre dans l'installation sont limités. Les seuls produits présents en phase d'exploitation sont :

- L'huile hydraulique du circuit haute pression (huile Texaco Rando WM 32) dont la quantité présente est de l'ordre de 250 litres.
- ★ L'huile de lubrification du multiplicateur (huile Mobil Gear SHCXMP): 1 170 litres.
- L'eau glycolée (mélange d'eau et d'éthylène glycol), utilisée comme liquide de refroidissement, dont le volume total de la boucle est de 400 litres);
- ★ Les graisses pour les roulements et systèmes d'entrainements ;
- L'hexafluorure de soufre (SF₆), qui est le gaz utilisé comme milieu isolant pour les cellules de protection électrique. La quantité présente varie entre 1.5 kg et 2.15 kg suivant le nombre de caissons composant la cellule.

D'autres produits peuvent être utilisés lors des phases de maintenance (lubrifiants, décapants, produits de nettoyage), mais toujours en faibles quantités (quelques litres au plus).

Les fiches de données de sécurité des principaux produits utilisés sont données en ANNEXE 10.

5.1.2. Dangers des produits

Inflammabilité et comportement vis à vis de l'incendie

Les huiles, les graisses et l'eau glycolée ne sont pas des produits inflammables. Ce sont néanmoins des produits combustibles qui sous l'effet d'une flamme ou d'un point chaud intense peuvent développer et entretenir un incendie. Dans les incendies d'éoliennes, ces produits sont souvent impliqués.

Certains produits de maintenance peuvent être inflammables mais ils ne sont amenés dans l'éolienne que pour les interventions et sont repris en fin d'opération.

Le SF₆ est pour sa part ininflammable.

Toxicité pour l'homme

Ces divers produits ne présentent pas de caractère de toxicité pour l'homme. Ils ne sont pas non plus considérés comme corrosifs (à causticité marquée).

Dangerosité pour l'environnement

Vis-à-vis de l'environnement, le SF₆ possède un potentiel de réchauffement global (gaz à effet de serre) très important, mais les quantités présentes sont très limitées (seulement 1 à 2 kg de gaz dans les cellules de protection).

Les huiles et graisses, même si elles ne sont pas classées comme dangereuses pour l'environnement, peuvent en cas de déversement au sol ou dans les eaux entraîner une pollution du milieu.

En conclusion, il ressort que les produits ne présentent pas de réel danger, si ce n'est lorsqu'ils sont soumis à un incendie, où ils vont entretenir cet incendie, ou s'ils sont déversés dans l'environnement générant un risque de pollution des sols ou des eaux.

5.2. Potentiels de dangers liés au fonctionnement de l'installation

Les dangers liés au fonctionnement de la Ferme éolienne de Blanzay 2 - Energie sont de cinq types :

- ★ Chute d'éléments de l'aérogénérateur (boulons, morceaux d'équipements, etc.) ;
- ♣ Projection d'éléments (morceau de pale, brides de fixation, etc.) ;
- Effondrement de tout ou partie de l'aérogénérateur ;
- Echauffement de pièces mécaniques ;
- ★ Courts-circuits électriques (aérogénérateur ou poste de livraison).

Ces potentiels dangers sont recensés dans le tableau suivant :

Tableau 18 : Potentiels de dangers liés au fonctionnement de l'installation

Installation ou système	Fonction	Phénomène redouté	Danger potentiel
Système de transmission	Transmission d'énergie mécanique	Survitesse	Echauffement des pièces mécaniques et flux thermique
Système de refroidissement	Refroidissement continu des éléments de la nacelle	Perte de circulation d'eau, fuite dans le circuit, arrêt du ventilateur	Echauffement des pièces mécaniques et flux thermique
Pale	Prise au vent	Bris de pale ou chute de pale	Energie cinétique d'éléments de pales
Aérogénérateur	Production d'énergie électrique à partir d'énergie éolienne	Effondrement	Energie cinétique de chute
Poste de livraison, intérieur de l'aérogénérateur	Réseau électrique	Court-circuit interne	Arc électrique
Nacelle	Protection des équipements destinés à la production électrique	Chute d'éléments	Energie cinétique de projection
Rotor	Transformer l'énergie éolienne en énergie mécanique	Projection d'objets	Energie cinétique des objets

5.3. <u>Réduction des potentiels de dangers à la source</u>

5.3.1. <u>Principales actions préventives</u>

Cette partie explique les choix qui ont été effectués par le porteur de projet au cours de la conception du projet pour réduire les potentiels de danger identifiés et garantir une sécurité optimale de l'installation.

Le choix d'implantation des aérogénérateurs diminue significativement les potentiels de dangers :

Les habitations :

La distance minimale réglementaire est de 500 m. L'habitation la plus proche dans le cadre de ce projet se situe en dehors du périmètre d'étude à 589 m de la première éolienne. Il s'agit d'une habitation localisée dans le hameau *Passac*, sur la commune de Champniers.

<u>Les voies de communications :</u>

La distance minimale requise par la Direction des Routes de la Vienne vis-à-vis du réseau départemental structurant est égale à une hauteur d'éolienne soit dans le cas présent : 200 m. Pour le réseau de développement local, l'éloignement doit être d'au moins deux fois la longueur d'une pale (soit 159,4 m). Le parc respecte ces recommandations. En effet, la route départementale la plus proche, numéro 159, si situe à environ 720 m au nord de l'éolienne E03.

Choix des éoliennes V162-6,8 MW / N163-5,7 MW :

Ces éoliennes de dernière génération présentent toutes les caractéristiques intrinsèques indispensables au respect de l'arrêté du 26 août 2011, modifié par les arrêtés du 22 juin 2020 et du 10 décembre 2021.

Ces éoliennes permettent de couvrir une plage plus importante de vent du fait de son rotor imposant de 162m voire 163m de diamètre. Grâce à leurs tailles, il capte plus facilement le vent même dans les petites vitesses, comparé à un rotor de diamètre inférieur. Cela optimise la production et permet de produire davantage d'électricité à partir d'une même quantité de vent.

Le mât de 118 à 119 m quant à lui, permet de positionner le l'axe de rotation du rotor à une hauteur telle que les irrégularités du sol n'ont plus d'influence sur la force et la constance du vent.

Les modes de bridage de ces éoliennes sont configurables, sans réduction significative de la productivité, ce qui permet une plus grande souplesse lorsque les études acoustiques montrent des dépassements de la réglementation en mode non bridé.

Enfin, ses dimensions et émissions acoustiques ont été étudiées dans le cadre des volets écologiques, paysagers, et acoustiques de l'étude d'impacts. Ces études concluent à la bonne adaptation de ce gabarit d'éolienne pour le site choisi.

5.3.2. Réduction des potentiels de dangers liés aux produits

Les produits présents sur chaque éolienne (huile, fluide de refroidissement) sont des produits classiques utilisés dans ce type d'activité. Ils ne présentent pas de caractère dangereux marqué et les quantités mises en œuvre sont adaptées aux volumes des équipements.

Une éventuelle pollution liée à l'entretien des éoliennes (déchets, produits d'entretien, huiles) n'est pas à négliger; ces nuisances peuvent toutefois être limitées par des techniques appropriées (bâches destinées à collecter les déchets).

Les transports d'huiles, de liquide de refroidissement et de graisse se font dans leur emballage d'origine ou contenants adaptés. Ils sont hissés du sol jusqu'à la nacelle grâce au palan interne. Les huiles usagées sont récupérées et traitées par une société spécialisée (valorisation, réutilisation des huiles).

Les éoliennes sont par ailleurs équipées de bacs de rétention capables de retenir des hydrocarbures présents notamment dans la nacelle pour lubrification. Un kit anti-pollution est aussi nécessaire pour chaque intervention.

Les déchets liquides polluant pouvant entraîner une pollution de l'eau (eau glycolée) ne sont pas jetés à l'égout, ni mélangés aux huiles usagées. Ils sont stockés dans des fûts ou cuves étanches.

Le SF₆ est un très bon isolant et ne dispose pas à ce jour de produit de substitution présentant des qualités équivalentes. De plus, malgré son caractère de gaz à effet de serre, il ne présente pas de danger pour l'homme (ininflammable et non toxique). Il n'est donc pas prévu de solution de substitution. Il faut rappeler que ce gaz est contenu dans les cellules d'isolement disposées en pied d'éolienne (cellules étanches) qui sont des matériels du commerce.

5.3.3. Utilisation des meilleures techniques disponibles

L'Union Européenne a adopté un ensemble de règles communes dès la directive 96/61/CE du 24 septembre 1996 relative à la prévention et à la réduction intégrées de la pollution, dite directive IPPC (« Integrated Pollution Prevention and Control »), afin d'autoriser et de contrôler les installations industrielles.

La directive IPPC visait à minimiser la pollution émanant de différentes sources industrielles dans toute l'Union Européenne.

La directive IPPC a été remplacée par la directive 2010/75/UE relative aux émissions industrielles, appelée directive IED. Cette nouvelle directive réunit en un seul texte sept directives distinctes relatives aux émissions industrielles.

Elle regroupe en particulier la directive IPPC, la directive 2001/80/CE relative aux grandes installations de combustion, la directive 2000/76/CE relative à l'incinération de déchets et la directive 1999/13/CE relative aux émissions de solvants.

Ce texte renforce tous les grands principes de la directive IPPC et élargit légèrement le champ d'application. Le bureau européen IPPC (Integrated Pollution Prevention and Control) a élaboré des documents guides, les BREF (Best REFerences), pour un certain nombre de branches industrielles ou de types d'installations techniques, faisant l'état des Meilleures Technologies Disponibles. La Directive IED est entrée en vigueur le 6 janvier 2011. Les BREF deviennent la référence obligatoire pour la détermination des conditions d'autorisation.

Les éoliennes n'entrent pas dans le champ d'application de l'annexe I de la directive IED ou rubrique 3000 et suivantes de la nomenclature des ICPE. Elles ne consomment pas de matières premières et ne rejettent aucune émission dans l'atmosphère. Elles ne sont pas soumises aux prescriptions de cette directive.

6. Analyse des retours d'expérience

Il n'existe actuellement aucune base de données officielle recensant l'accidentologie dans la filière éolienne. Néanmoins, il a été possible d'analyser les informations collectées en France et dans le monde par plusieurs organismes divers (associations, organisations professionnelles, littérature spécialisée, etc.). Ces bases de données sont cependant très différentes tant en termes de structuration des données qu'en termes de détail de l'information.

L'analyse des retours d'expérience vise donc ici à faire émerger des typologies d'accident rencontrés tant au niveau national qu'international. Ces typologies apportent un éclairage sur les scénarios les plus rencontrés. D'autres informations sont également utilisées dans la partie 8 pour l'analyse détaillée des risques.

6.1. Inventaire des accidents et incidents en France

Un inventaire des incidents et accidents en France a été réalisé afin d'identifier les principaux phénomènes dangereux potentiels pouvant affecter le parc éolien. Cet inventaire se base sur le retour d'expérience de la filière éolienne tel que présenté dans le guide technique de conduite de l'étude de dangers (mars 2012).

Plusieurs sources ont été utilisées pour effectuer le recensement des accidents et incidents au niveau français. Il s'agit à la fois de sources officielles, d'articles de la presse locale ou de base de données mises en place par des associations :

- → Rapport du Conseil Général des Mines (juillet 2004);
- Base de données ARIA du Ministère du Développement Durable (http://www.aria.developpementdurable.gouv.fr/);
- Communiqués de presse du SER-FEE et/ou des exploitants éoliens ;
- ★ Site Internet de l'association « Vent de Colère » ;
- ★ Site Internet de l'association « Fédération Environnement Durable » ;
- ★ Articles de presse divers ;
- → Données diverses fournies par les exploitants de parcs éoliens en France.

Dans le cadre de ce recensement, il n'a pas été réalisé d'enquête exhaustive directe auprès des exploitants de parcs éoliens français. Cette démarche pourrait augmenter le nombre d'incidents recensés mais cela concernerait essentiellement les incidents les moins graves. Néanmoins, une telle démarche pourra être entreprise en complément.

Dans l'état actuel, la base de données apparaît comme représentative des incidents majeurs ayant affecté le parc éolien français depuis l'année 2000. L'ensemble de ces sources permet d'arriver à un inventaire aussi complet que possible des incidents survenus en France. Un total de 111 incidents est recensé entre 2000 et 2020. Ce tableau de travail a été validé par les membres du groupe de travail.

Il apparaît dans ce recensement que les aérogénérateurs accidentés sont principalement des modèles anciens ne bénéficiant généralement pas des dernières avancées technologiques. Le graphique suivant montre la répartition des événements accidentels et de leurs causes premières sur le parc d'aérogénérateurs français entre 2000 et le premier semestre 2019. Cette synthèse exclut les accidents du travail (maintenance, chantier de construction, etc.) et les événements qui n'ont pas conduits à des effets sur les zones autour des aérogénérateurs. L'identification des causes est nécessairement réductrice. Dans ce graphique sont présentées :

- La répartition des causes premières pour chacun des événements décrits ci-dessous. Celle-ci est donnée par rapport à la totalité des accidents observés en France. Elles sont représentées par des histogrammes de couleur claire.

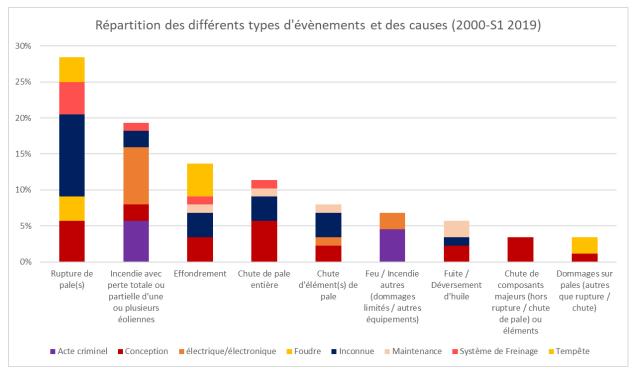


Figure 14 : Répartition des événements accidentels en France

Par ordre d'importance, les accidents les plus recensés sont les ruptures de pale, les incendies, les effondrements, les chutes de pale et les chutes d'éléments de pales.

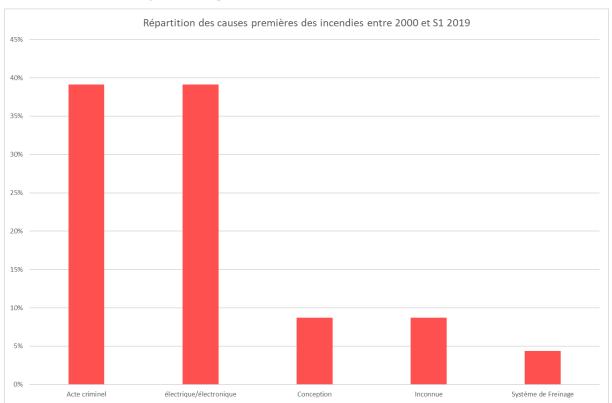
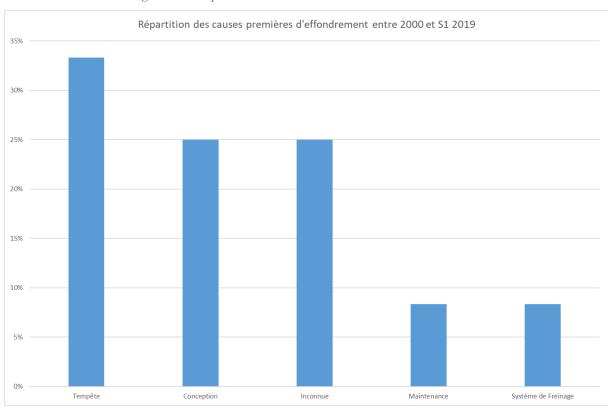



Figure 15 : Répartition des causes des incendies en France

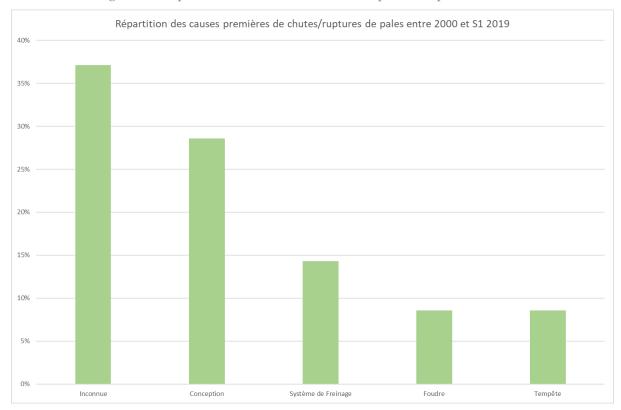


Figure 17 : Répartition des causes de chutes / ruptures de pales en France

Par ordre d'importance, les accidents les plus recensés sont les ruptures de pale, les incendies (nombreux cas criminels), les effondrements, les chutes de pale et les chutes des autres éléments de l'éolienne. La principale cause de ces accidents est liée à la conception des machines, régulièrement mise en cause en cas de tempête.

6.2. Inventaire des accidents et incidents à l'international

Un inventaire des incidents et accidents à l'international, a également été réalisé. Il se base lui aussi sur le retour d'expérience de la filière éolienne fin 2010.

La synthèse ci-dessous provient de l'analyse de la base de données réalisée par l'association Caithness Wind Information Forum (CWIF). Sur les 994 accidents décrits dans la base de données au moment de sa consultation par le groupe de travail, seuls 236 sont considérés comme des « accidents majeurs ». Les autres concernant plutôt des accidents du travail, des presque-accidents, des incidents, etc. et ne sont donc pas pris en compte dans l'analyse suivante. Le graphique suivant montre la répartition des événements accidentels par rapport à la totalité des accidents analysés.

Le graphique suivant montre la répartition des événements accidentels par rapport à la totalité des accidents analysés.

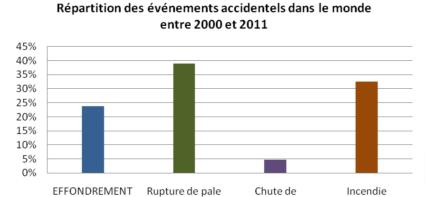
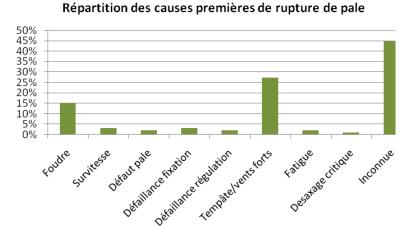


Figure 18 : Répartition des événements accidentels dans le monde


Ci-après, est présenté le recensement des causes premières pour chacun des événements accidentels recensés (données en répartition par rapport à la totalité des accidents analysés).

pale/éléments

Répartition des causes premières d'effondrement 60% 50% 40% 30% 20% 10% 0% Inconnue

Figure 19: Répartition des causes premières d'effondrement

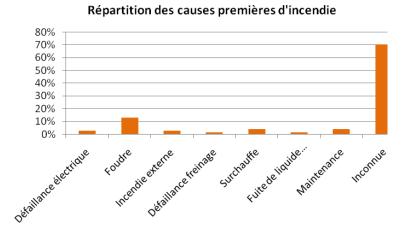


Figure 21 : Répartition des causes premières d'incendie

Tout comme pour le retour d'expérience français, ce retour d'expérience montre l'importance des causes « tempêtes et vents forts » dans les accidents. Il souligne également le rôle de la foudre dans les accidents.

6.3. <u>Inventaire des accidents majeurs survenus sur les sites de l'exploitant</u>

Le groupe VOLKSWIND n'a connu qu'un seul accident sur l'ensemble des parcs qu'il exploite depuis 2001. Il s'agit d'un incident survenu sur l'une des éoliennes du parc éolien de Périgné (79), dont une pale s'est cassée en raison d'un impact de foudre en février 2020. L'éolienne a été arrêtée afin de déposer la pale au sol et procéder à sa réparation.

6.4. <u>Synthèse des phénomènes dangereux redoutés issus du retour</u> <u>d'expérience</u>

6.4.1. Analyse des typologies d'accidents les plus fréquents

A partir de l'ensemble des phénomènes dangereux qui ont été recensés, il est possible d'étudier leur évolution en fonction du nombre d'éoliennes installées.

La figure ci-dessous montre cette évolution et il apparait clairement que le nombre d'incidents n'augmente pas proportionnellement au nombre d'éoliennes installées. Depuis 2005, l'énergie éolienne s'est en effet fortement développée en France, mais le nombre d'incidents par an reste relativement constant.

Cette tendance s'explique principalement par un parc éolien français assez récent, qui utilise majoritairement des éoliennes de nouvelle génération, équipées de technologies plus fiables et plus sûres.

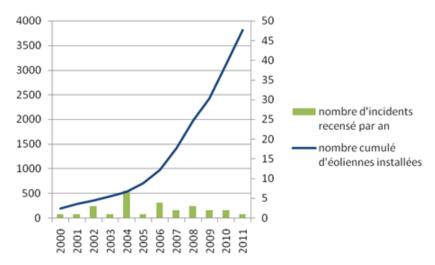


Figure 22 : Evolution du nombre d'incidents annuels en France et du nombre d'éoliennes installées

D'après la base de données ARIA, 39 incidents ou accidents sont survenus en France entre 2002 et 2016 (moyenne de 2,6/ an).

6.4.2. Analyse des typologies d'accidents les plus fréquents

Le retour d'expérience de la filière éolienne française et internationale permet d'identifier les principaux événements redoutés suivants :

- ★ Effondrements;
- Ruptures de pales ;
- Chutes de pales et d'éléments de l'éolienne ;

6.5. <u>Limites d'utilisation de l'accidentologie</u>

Les retours d'expérience présentés ci-dessus doivent être pris avec précaution. Ils comportent notamment les biais suivants :

- ▲ <u>La non-exhaustivité des événements</u>: ce retour d'expérience, constitué à partir de sources variées, ne provient pas d'un système de recensement organisé et systématique. Dès lors, certains événements ne sont pas reportés. En particulier, les événements les moins spectaculaires peuvent être négligés : chutes d'éléments, projections et chutes de glace ;
- La non-homogénéité des aérogénérateurs inclus dans ce retour d'expérience : les aérogénérateurs observés n'ont pas été construits aux mêmes époques et ne mettent pas en œuvre les mêmes technologies. Les informations sont très souvent manquantes pour distinguer les différents types d'aérogénérateurs (en particulier concernant le retour d'expérience mondial) ;
- Les importantes incertitudes sur les causes et sur la séquence qui a mené à un accident : de nombreuses informations sont manquantes ou incertaines sur la séquence exacte des accidents ;

L'analyse du retour d'expérience permet ainsi de dégager de grandes tendances, mais à une échelle détaillée, elle comporte de nombreuses incertitudes.

7. Analyse préliminaire des risques

7.1. Objectif de l'analyse préliminaire des risques

L'analyse des risques a pour objectif principal d'identifier les scénarios d'accidents majeurs et les mesures de sécurité qui empêchent ces scénarios de se produire ou en limitent les effets. Cet objectif est atteint au moyen d'une identification de tous les scénarios d'accidents potentiels pour une installation (ainsi que des mesures de sécurité) basé sur un questionnement systématique des causes et conséquences possibles des événements accidentels, ainsi que sur le retour d'expérience disponible.

Les scénarios d'accident sont ensuite hiérarchisés en fonction de leur intensité et de l'étendue possible de leurs conséquences. Cette hiérarchisation permet de « filtrer » les scénarios d'accidents qui présentent des conséquences limitées et les scénarios d'accidents majeurs – ces derniers pouvant avoir des conséquences sur les personnes.

7.2. Recensement des événements initiateurs exclus de l'analyse des risques

Conformément à la circulaire du 10 mai 2010, les événements initiateurs (ou agressions externes) suivants sont exclus de l'analyse des risques :

- ★ Chute de météorite ;
- ★ Séisme d'amplitude supérieure aux séismes maximums de référence éventuellement corrigés de facteurs, tels que définis par la réglementation applicable aux installations classées considérées ;
- Événements climatiques d'intensité supérieure aux événements historiquement connus ou prévisibles pouvant affecter l'installation, selon les règles en vigueur ;
- ★ Chute d'avion hors des zones de proximité d'aéroport ou aérodrome (rayon de 2 km des aéroports et aérodromes);
- Rupture de barrage de classe A ou B au sens de l'article R. 214-112 du Code de l'environnement ou d'une digue de classe A, B ou C au sens de l'article R. 214-113 du même code ;
- ★ Actes de malveillance.

D'autre part, plusieurs autres agressions externes qui ont été détaillées dans l'état initial peuvent être exclues de l'analyse préliminaire des risques car les conséquences propres de ces événements, en termes de gravité et d'intensité, sont largement supérieures aux conséquences potentielles de l'accident qu'ils pourraient entrainer sur les aérogénérateurs. Le risque de sur-accident lié à l'éolienne est considéré comme négligeable dans le cas des événements suivants :

- ▲ Inondations;
- Séismes d'amplitude suffisante pour avoir des conséquences notables sur les infrastructures,

- → Pertes de confinement de canalisations de transport de matières dangereuses,
- ★ Explosions ou incendies générés par un accident sur une activité voisine de l'éolienne.

7.3. Recensement des agressions externes potentielles

La première étape de l'analyse des risques consiste à recenser les « agressions externes potentielles ». Ces agressions provenant d'une activité ou de l'environnement extérieur sont des événements susceptibles d'endommager ou de détruire les aérogénérateurs de manière à initier un accident qui peut à son tour impacter des personnes. Par exemple, un séisme peut endommager les fondations d'une éolienne et conduire à son effondrement.

Traditionnellement, deux types d'agressions externes sont identifiés :

- Les agressions externes liées aux activités humaines ;
- Les agressions externes liées à des phénomènes naturels.

7.3.1. <u>Agressions externes liées aux activités humaines</u>

Le tableau ci-dessous synthétise les principales agressions externes liées aux activités humaines.

Seules les agressions externes liées aux activités humaines présentes dans un rayon de 200 m (distance à partir de laquelle l'activité considérée ne constitue plus un agresseur potentiel) sont recensées ici, à l'exception de la présence des aérodromes qui sera reportée lorsque ceux-ci sont implantés dans un rayon de 2 km et des autres aérogénérateurs qui seront reportés dans un rayon de 500 m.

Tableau 19: Agressions externes liées aux activités humaines

Infrastructure	Fonction	Evénement redouté	Danger potentiel	Distance par rapport au mât des éoliennes (m)			
				E01	E02	E03	E04
Voie Communale N°302	Transport	Accident entraînant la sortie de voie d'un ou plusieurs véhicules	Energie cinétique des véhicules et flux thermiques	273	680	1 255	1 072
Voie Communale N°305	Transport	Accident entraînant la sortie de voie d'un ou plusieurs véhicules	Energie cinétique des véhicules et flux thermiques	283	718	1 083	591
Chemins ruraux	Transport	Accident entraînant la sortie de voie d'un ou plusieurs véhicules	Energie cinétique des véhicules et flux thermiques	220 (Chemin de Ia Vallée du Puits)	103 (Chemin de la Mothe Saint-Héray à Charroux)	130 (Chemin d'exploitatio n n°3)	60 (Chemin dit des Roches)
Autre aérogénérateur le plus proche	Production d'électricité	Accident générant des projections d'éléments	Energie cinétique des éléments projetés	486 (E03 Blanzay1)	803 (E05 Blanzay1)	1 240 (E05 Blanzay1)	766 (E05 Blanzay1)
Agriculture	Exploitation agricole	Engin agricole percutant le poste de livraison	Energie cinétique des véhicules		**	NA	
Chasse	Loisir	Balle perdue sur les parois du mât ou sur les pales	Energie cinétique de la balle		**	NA	

^{**} NA : Non Applicable

7.3.2. Agressions externes liées aux phénomènes naturels

Le tableau ci-dessous synthétise les principales agressions externes liées aux phénomènes naturels :

Tableau 20 : Agressions externes liées aux phénomènes naturels

Agression externe	Intensité
Séisme	Zone de sismicité 3 : modérée
Vents et tempête	Le record de vent est de 39 m/s (soit de 140 km/h) enregistré en 1999 sur la station Météo France de Poitiers-Biard.
Inondations	Zone de projet non concernée par le risque inondation.
Foudre	Niveau kéraunique < 25 jours Respect de la norme NF EN IEC 61 400-24 (Juin 2010) ou EN 62 305 – 3 (Décembre 2006)
Glissement de sols / affaissement miniers	Zone d'aléa retrait-gonflement d'argile fort

Le cas spécifique des effets directs de la foudre et du risque de tension de pas n'est pas traité dans l'analyse des risques et dans l'étude détaillée des risques dès lors qu'il est vérifié que la norme NF EN IEC 61 400-24 (Juin 2010) ou la norme EN 62 305-3 (Décembre 2006) est respectée. Ces conditions sont reprises dans la fonction de sécurité n°6 ci-après.

En ce qui concerne la foudre, on considère que le respect des normes rend le risque d'effet direct de la foudre négligeable (risque électrique, risque d'incendie, etc....). En effet, le système de mise à la terre permet d'évacuer l'intégralité du courant de foudre. Cependant, les conséquences indirectes de la foudre, comme la possible fragilisation progressive de la pale, sont prises en compte dans les scénarios de rupture de pale.

7.4. <u>Scénarios étudiés dans l'analyse préliminaire des risques</u>

L'Analyse Préliminaire des Risques (APR) doit identifier l'ensemble des séquences accidentelles et phénomènes dangereux associés pouvant déclencher la libération du danger.

Le tableau ci-dessous présente une proposition d'analyse générique des risques. Celui-ci est construit de la manière suivante :

- Une description des causes et de leur séquençage (événements initiateurs et événements intermédiaires);
- Une description des événements redoutés centraux qui marquent la partie incontrôlée de la séquence d'accident;
- ↓ Une description des fonctions de sécurité permettant de prévenir l'événement redouté central ou de limiter les effets du phénomène dangereux;

- ★ L'échelle utilisée pour l'évaluation de l'intensité des événements a été adaptée au cas des éoliennes :
- 🙏 « 1 » correspond à un phénomène limité ou se cantonnant au surplomb de l'éolienne ;
- « 2 » correspond à une intensité plus importante et impactant potentiellement des personnes autour de l'éolienne.

Les différents scénarios listés de l'APR sont regroupés et numérotés par thématique, en fonction des typologies d'événements redoutés centraux identifiés grâce au retour d'expérience (« G » pour les scénarios concernant la glace, « I » pour ceux concernant l'incendie, « F » pour ceux concernant les fuites, « C » pour ceux concernant la chute d'éléments de l'éolienne, « P » pour ceux concernant les risques de projection, « E » pour ceux concernant les risques d'effondrement).

Tableau 21 : Analyse générique des risques

N°	Evénement initiateur	Evénement intermédiaire	Evénement redouté central	Fonction de sécurité (intitulé générique)	Phénomène dangereux	Qualificati on de la zone d'effet
G0	Conditions climatiques I favorables à la formation de glace	Dépôt de glace sur les pales, le mât et la nacelle	Chute de glace lorsque les éoliennes sont arrêtées	Prévenir l'atteinte des personnes par la chute de glace (N°2)	Impact de glace sur les enjeux	1
G0	Conditions climatiques favorables à la formation de glace	Dépôt de glace sur les pales	Projection de glace lorsque les éoliennes sont en mouvement	Prévenir la mise en mouvement de l'éolienne lors de la formation de la glace (N°1)	Impact de glace sur les enjeux	2
102	Humidité / Gel	Court-circuit	Incendie de tout ou partie de l'éolienne	Prévenir les courts- circuits (N°5)	Chute/projection d'éléments enflammés Propagation de l'incendie	2
102	Dysfonctionnem ent électrique	Court-circuit	Incendie de tout ou partie de l'éolienne	Prévenir les courts- circuits (N°5)	Chute/projection d'éléments enflammés Propagation de l'incendie	2

N°	Evénement initiateur	Evénement intermédiaire	Evénement redouté central	Fonction de sécurité (intitulé générique)	Phénomène dangereux	Qualificati on de la zone d'effet
103	Survitesse	Echauffement des parties mécaniques et inflammation	Incendie de tout ou partie de l'éolienne	Prévenir l'échauffement significatif des pièces mécaniques (N°3) Prévenir la survitesse (N°4)	Chute/projection d'éléments enflammés Propagation de l'incendie	2
104	Désaxage de la génératrice / Pièce défectueuse / Défaut de lubrification	Echauffement des parties mécaniques et inflammation	Incendie de tout ou partie de l'éolienne	Prévenir l'échauffement significatif des pièces mécaniques (N°3)	Chute/projection d'éléments enflammés Propagation de l'incendie	2
105	Conditions climatiques humides	Surtension	Court-circuit	Prévenir les courts- circuits (N°5) Protection et intervention incendie (N°7)	Incendie poste de livraison (flux thermiques + fumées toxiques SF6) Propagation de l'incendie	2
106	Rongeur	Surtension	Court-circuit	Prévenir les courts- circuits (N°5) Protection et intervention incendie (N°7)	Incendie poste de livraison (flux thermiques + fumées toxiques SF6) Propagation de l'incendie	2
107	Défaut d'étanchéité	Perte de confinement	Fuites d'huile isolante	Prévention et rétention des fuites (N°8)	Incendie au poste de transformation Propagation de l'incendie	2
F01	Fuite système de lubrification Fuite convertisseur Fuite	Ecoulement hors de la nacelle et le long du mât, puis sur le sol	Infiltration d'huile dans le sol	Prévention et rétention des fuites (N°8)	Pollution environnement	1

N°	Evénement initiateur	Evénement intermédiaire	Evénement redouté central	Fonction de sécurité (intitulé générique)	Phénomène dangereux	Qualificati on de la zone d'effet
	transformateur	avec infiltration				
F02	Renversement de fluides lors des opérations de maintenance	Ecoulement	Infiltration d'huile dans le sol	Prévention et rétention des fuites (N°8)	Pollution environnement	1
C01	Défaut de fixation	Chute de trappe	Chute d'élément de l'éolienne	Prévenir les erreurs de maintenance (N°10)	Impact sur cible	1
C02	Défaillance fixation anémomètre	Chute anémomètre	Chute d'élément de l'éolienne	Prévenir les défauts de stabilité de l'éolienne et les défauts d'assemblage (construction – exploitation) (N° 9)	Impact sur cible	1
C3	Défaut fixation nacelle – pivot central – mât	Chute nacelle	Chute d'élément de l'éolienne	Prévenir les défauts de stabilité de l'éolienne et les défauts d'assemblage (construction – exploitation) (N° 9)	Impact sur cible	1
P01	Survitesse	Contraintes trop importantes sur les pales	Projection de tout ou partie pale	Prévenir la survitesse (N°4)	Impact sur cible	2
P02	Fatigue Corrosion	Chute de fragment de pale	Projection de tout ou partie pale	Prévenir la dégradation de l'état des équipements (N°11)	Impact sur cible	2
P03	Serrage inapproprié Erreur maintenance – desserrage	Chute de fragment de pale	Projection de tout ou partie pale	Prévenir les défauts de stabilité de l'éolienne et les défauts d'assemblage (construction –	Impact sur cible	2

N°	Evénement initiateur	Evénement intermédiaire	Evénement redouté central	Fonction de sécurité (intitulé générique)	Phénomène dangereux	Qualificati on de la zone d'effet
				exploitation) (N° 9)		
E01	Effets dominos autres installations	Agression externe et fragilisation structure	Effondrement éolienne	Prévenir les défauts de stabilité de l'éolienne et les défauts d'assemblage (construction – exploitation) (N° 9)	Projection/chute fragments et chute mât	2
E02	Glissement de sol	Agression externe et fragilisation structure	Effondrement éolienne	Prévenir les défauts de stabilité de l'éolienne et les défauts d'assemblage (construction – exploitation) (N° 9)	Projection/chute fragments et chute mât	2
E05	Crash d'aéronef	Agression externe et fragilisation structure	Effondrement éolienne	Prévenir les défauts de stabilité de l'éolienne et les défauts d'assemblage (construction – exploitation) (N° 9)	Projection/chute fragments et chute mât	2
E07	Effondrement engin de levage travaux	Agression externe et fragilisation structure	Effondrement éolienne	Actions de prévention mises en œuvre dans le cadre du plan de prévention (N°13)	Chute fragments et chute mât	2

N°	Evénement initiateur	Evénement intermédiaire	Evénement redouté central	Fonction de sécurité (intitulé générique)	Phénomène dangereux	Qualificati on de la zone d'effet
E08	Vents forts	Défaillance fondation	Effondrement éolienne	Prévenir les défauts de stabilité de l'éolienne et les défauts d'assemblage (construction – exploitation) (N° 9) Prévenir les risques de dégradation de l'éolienne en cas de vent fort (N°12) Dans les zones cycloniques, mettre en place un système de prévision cyclonique et équiper les éoliennes d'un dispositif d'abattage et d'arrimage au sol (N°13)	Projection/chute fragments et chute mât	2
E09	Fatigue	Défaillance mât	Effondrement éolienne	Prévenir la dégradation de l'état des équipements (N°11)	Projection/chute fragments et chute mât	2
E10	Désaxage critique du rotor	Impact pale – mât	Effondrement éolienne	Prévenir les défauts de stabilité de l'éolienne et les défauts d'assemblage (construction – exploitation) (N°9) Prévenir les erreurs de maintenance (N°10)	Projection/chute fragments et chute mât	2

Ce tableau présentant le résultat d'une analyse des risques peut être considéré comme représentatif des scénarios d'accident pouvant potentiellement se produire sur les éoliennes. Des précisions sur les différents scénarios décrits dans ce tableau sont disponibles en annexe 5 de la présente étude de dangers.

7.5. <u>Effets dominos</u>

Lors d'un accident majeur sur une éolienne, une possibilité est que les effets de cet accident endommagent d'autres installations. Ces dommages peuvent conduire à un autre accident. Par exemple, la projection de pale impactant les canalisations d'une usine à proximité peut conduire à des fuites de canalisations de substances dangereuses. Ce phénomène est appelé « effet domino ».

En ce qui concerne les accidents sur des aérogénérateurs qui conduiraient à des effets dominos sur d'autres installations, le paragraphe 1.2.2 de la circulaire du 10 mai 2010 précise : « [...] seuls les effets dominos générés par les fragments sur des installations et équipements proches ont vocation à être pris en compte dans les études de dangers [...]. Pour les effets de projection à une distance plus lointaine, l'état des connaissances scientifiques ne permet pas de disposer de prédictions suffisamment précises et crédibles de la description des phénomènes pour déterminer l'action publique ».

Dans le cadre des études de dangers éoliennes, la probabilité d'impact d'un élément de l'aérogénérateur sur une autre installation ICPE n'est évaluée que lorsque celle-ci se situe dans un rayon de 100 mètres.

Il n'y a pas d'installations ICPE dans ce périmètre d'étude. Les effets dominos ne sont pas étudiés.

7.6. Mise en place des mesures de sécurité

La troisième étape de l'analyse préliminaire des risques consiste à identifier les barrières de sécurité installées sur les aérogénérateurs et qui interviennent dans la prévention et/ou la limitation des phénomènes dangereux listés dans le tableau APR et de leurs conséquences.

Les tableaux suivants ont pour objectif de synthétiser les fonctions de sécurité identifiées et mises en œuvre sur les éoliennes de Blanzay 2 – Energie.

Dans le cadre de la présente étude de dangers, les fonctions de sécurité sont détaillées selon les critères suivants :

- ★ Fonction de sécurité: il est proposé ci-dessous un tableau par fonction de sécurité. Cet intitulé décrit l'objectif de la ou des mesure(s) de sécurité: il s'agira principalement d'« empêcher, éviter, détecter, contrôler ou limiter » et sera en relation avec un ou plusieurs événements conduisant à un accident majeur identifié dans l'analyse des risques. Plusieurs mesures de sécurité peuvent assurer une même fonction de sécurité.
- Numéro de la fonction de sécurité : cette colonne vise à simplifier la lecture de l'étude de dangers en permettant des renvois à l'analyse de risque par exemple.
- ★ Mesures de sécurité : cette ligne permet d'identifier les mesures assurant la fonction concernée. Dans le cas de système instrumentés de sécurité, tous les éléments de la chaîne devront être présentés (détection + traitement de l'information + action). Il n'est pas demandé de décrire dans le détail la marque ou le fonctionnement de l'équipement considéré, simplement de mentionner leur existence.
- → **Description**: cette ligne permet de préciser la description de la mesure de maîtrise des risques, lorsque des détails supplémentaires sont nécessaires.

Dans le cadre des études de dangers éoliennes, il est recommandé de mesurer cette indépendance à travers les questions suivantes :

- Est-ce que la mesure de sécurité décrite a pour unique but d'agir pour la sécurité ? Il s'agit en effet ici de distinguer ces dernières de celles qui jouent un rôle dans la sécurité mais aussi dans l'exploitation de l'aérogénérateur.
- Cette mesure est-elle indépendante des autres mesures intervenant sur le scénario ?
 - ★ Temps de réponse (en secondes ou en minutes) : cette caractéristique mesure le temps requis entre la sollicitation et l'exécution de la fonction de sécurité. Dans le cadre d'une étude de dangers éolienne, l'estimation de ce temps de réponse peut être simplifié et se contenter d'une estimation d'un temps de réponse maximum qui doit être atteint. Néanmoins, et pour rappel, la réglementation impose les temps de réponse suivants :
 - Une mesure de maîtrise des risques remplissant la fonction de sécurité « limiter les conséquences d'un incendie » doit permettre de détecter un incendie et de transmettre l'alerte aux services d'urgence compétents dans un délai de 15 minutes;
 - Une seconde mesure maîtrise des risques remplissant la fonction de sécurité « limiter les conséquences d'un incendie » doit permettre de détecter un incendie et de mettre en œuvre une procédure d'arrêt d'urgence dans un délai de 60 minutes;
 - ★ Efficacité (100% ou 0%) : l'efficacité mesure la capacité d'une mesure de maîtrise des risques à remplir la fonction de sécurité qui lui est confiée pendant une durée donnée et dans son contexte d'utilisation. Il s'agit de vérifier qu'une mesure de sécurité est bien dimensionnée pour remplir la fonction qui lui a été assigné.
 - Test (fréquence): dans ce champ sont rappelés les tests/essais qui seront réalisés sur les mesures de maîtrise des risques. Conformément à la réglementation, un essai d'arrêt, d'arrêt d'urgence et d'arrêt à partir d'une situation de survitesse seront réalisés avant la mise en service de l'aérogénérateur. Dans tous les cas, les tests effectués sur les mesures de maîtrise des risques seront tenus à la disposition de l'inspection des installations classées pendant l'exploitation de l'installation.
 - Maintenance (fréquence): ce critère porte sur la périodicité des contrôles qui permettront de vérifier la performance de la mesure de maîtrise des risques dans le temps. Pour rappel, la réglementation demande qu'à minima: un contrôle tous les ans soit réalisé sur la performance des mesures de sécurité permettant de mettre à l'arrêt, à l'arrêt d'urgence et à l'arrêt à partir d'une situation de survitesse et sur tous les systèmes instrumentés de sécurité.

Note 1 : Pour certaines mesures de maîtrise des risques, certains de ces critères peuvent ne pas être applicables. Il convient alors de renseigner le critère correspondant avec l'acronyme « NA » (Non Applicable).

Note 2 : Certaines mesures de maîtrise des risques ne remplissent pas les critères « efficacité » ou « indépendance » : elles ont une fiabilité plus faible que d'autres mesures de maîtrise des risques. Celles-ci peuvent néanmoins être décrites dans le tableau ci-dessous dans la mesure où elles concourent à une meilleure sécurité sur le site d'exploitation.

Tableau 22 : Mesures de sécurité pour prévenir la mise en mouvement de l'éolienne lors de la formation de glace

Fonction de sécurité	Prévenir la mise en mouvement de l'éolienne lors de la formation de glace	N° de la fonction de sécurité	1
Mesures de sécurité	Système de déduction de la formation de glace.		
Description	Ce système déduit la formation de glace sur les température et de rendement de l'éolienne (l'accumu et diminue le rendement de la turbine). Une configur d'alerter les opérateurs par un message type « Ice de ensuite effectuée de manière automatique ou manuell Les procédures de redémarrage sont définies par l'expl	ulation de glace alcoration du système de Climate ». Une mise, selon le type de C	ourdit les pales SCADA permet se à l'arrêt est
Indépendance	Oui		
Temps de réponse	Mise à l'arrêt de la turbine < 1 min		
Efficacité	100 %		
Tests	NA		
Maintenance	Surveillance via la maintenance prédictive		

Tableau 23 : Mesures de sécurité pour prévenir l'atteinte des personnes par la chute de glace

Fonction de sécurité	Prévenir l'atteinte des personnes par la chute de glace	N° de la fonction de sécurité	2
Mesures de sécurité	Signalisation du risque en pied de machine Eloignement des zones habitées et fréquentées		
Description	Mise en place de panneaux de signalisation en pied de machine informant du risque de chute de glace (conformément à l'article 14 de l'arrêté du 26 août 2011, modifié par l'arrêté du 22 juin 2020.).		
Indépendance	Oui		
Temps de réponse	NA		

Efficacité	100 %. Nous considérerons que compte tenu de l'implantation des panneaux et de	
	l'entretien prévu, l'information des promeneurs sera systématique.	
Tests	NA	
Maintenance	Vérification de l'état général du panneau, de l'absence de détérioration, entretien de la végétation afin que le panneau reste visible.	

Tableau 24 : Mesures de sécurité pour prévenir l'échauffement significatif des pièces mécaniques

Mesures de sécurité	Sondes de température sur pièces mécaniques Suivant les niveaux d'alarme et les capteurs, la machine peut être bridée ou mise à l'arrêt jusqu'à refroidissement. Le redémarrage peut être effectué à distance, si les seuils de température sont audessous des seuils d'alarme.	
Description	Des sondes de température sont mises en place sur les équipements ayant de fortes variations de température au cours de leur fonctionnement (paliers et roulements des machines tournantes, enroulements du générateur et du transformateur). Ces sondes ont des seuils hauts qui, une fois dépassés, conduisent à une alarme et à une mise à l'arrêt du rotor.	
Indépendance	Oui	
Temps de réponse	Temps de détection de l'ordre de la seconde Mise en pause de la turbine < 1 min	
Efficacité	100 %	
Tests	Surveillance via la maintenance prédictive, avec détection de la déviation de températures de chaque capteur.	
Maintenance	Surveillance via la maintenance prédictive, avec détection de la déviation de température de chaque capteur (comparaison avec les données des autres éoliennes du parc). Remplacement de la sonde de température en cas de dysfonctionnement de l'équipement. Vérification du système au bout de 3 mois de fonctionnement puis contrôle annuel conformément à l'article 18 de l'arrêté du 26 août 2011, modifié par l'arrêté du 22 juin	

2020.

Tableau 25 : Mesures de sécurité pour prévenir la survitesse

Fonction de sécurité	Prévenir la survitesse N° de la fonction 4 de sécurité
Mesures de sécurité	Détection de survitesse et système de freinage.
	Eléments du système de protection contre la survitesse conformes aux normes IEC 61508 (SIL 2) et EN 954-1
Description	Systèmes de coupure s'enclenchant en cas de dépassement des seuils de vitesse prédéfinis, indépendamment du système de contrôle commande.
	NB : Le système de freinage est constitué d'un frein aérodynamique principal (mise en
	drapeau des pales) et / ou d'un frein mécanique auxiliaire.
Indépendance	Oui
Temps de réponse	15 à 60s (arrêt de l'éolienne selon le programme de freinage adapté)
	L'exploitant ou l'opérateur désigné sera en mesure de transmettre l'alerte aux services
	d'urgence compétents dans un délai de 15 minutes suivant l'entrée en fonctionnement anormal de l'aérogénérateur conformément aux dispositions de l'arrêté du 26 août
	2011, modifié par l'arrêté du 22 juin 2020.
Efficacité	100 %
Tests	Test d'arrêt simple, d'arrêt d'urgence et de la procédure d'arrêt en cas de survitesse
	avant la mise en service industrielle des aérogénérateurs conformément à l'article 17 de
	l'arrêté du 26 août 2011, modifié par les arrêtés du 22 juin 2020 et du 10 décembre 2021.
Maintenance	Maintenance préventive annuelle de l'éolienne avec notamment contrôle de l'usure du
	frein et de pression du circuit de freinage d'urgence.
	Maintenance de remplacement en cas de dysfonctionnement de l'équipement.

Tableau 26 : Mesures de sécurité pour prévenir les courts-circuits

Fonction de sécurité	Prévenir les courts-circuits	N° de la fonction de sécurité	5
Mesures de sécurité	Détecteur d'arc avec coupure électrique (salle transformateur et armoires électriques).		électriques).
Description	Outre les protections traditionnelles contre les surintensités et les surtensions, les armoires électriques disposées dans les nacelles (qui abritent les divers jeux de barres), sont équipées de détecteurs d'arc électrique. Ce système de capteurs photosensibles a pour objectif de détecter toute formation d'un arc électrique (caractéristique d'un début d'amorçage) qui pourrait conduire à des phénomènes de fusion de conducteurs et de début d'incendie. Le fonctionnement de ces détecteurs commande le déclenchement de la cellule HT située en pied de mât, conduisant ainsi à la mise hors tension de la machine. La remise sous tension puis le recouplage de la machine ne peuvent être faits qu'après inspection visuelle des éléments HT de la nacelle, puis du réarmement du détecteur d'arc et de l'acquittement manuel du défaut.		
Indépendance	Oui		
Temps de réponse	50 millisecondes Le couplage du système de détection d'arc électrique l'envoi en temps réel d'alertes par SMS et par co l'exploitant.		·
Efficacité	100 %		
Tests	Test des détecteurs d'arc à la mise en service puis tous	les ans.	
Maintenance	Les installations électriques font l'objet d'un contindustrielle du parc éolien, qui donne lieu à un rapportent, attestant de la conformité de l'ensemble conformément à l'article 10 de l'arrêté du 26 août 20 juin 2020 et du 10 décembre 2021. Des vérifications de tous les équipements électriques à et de serrage des câbles sont intégrés dans le manuel de la conformité de l'ensemble de l'ensem	port de contrôle d ble des installation 11, modifié par les ainsi que des mesur	'un organisme ns électriques, s arrêtés du 22 res d'isolement

Tableau 27 : Mesures de sécurité pour prévenir les effets de la foudre

Fonction de sécurité	Prévenir les effets de la foudre	N° de la fonction de sécurité	6
Mesures de sécurité	Système de protection contre la foudre, conçu pour ré de la norme internationale IEC 61400.	pondre à la classe	de protection I
Description	Compte tenu de leur situation et des matériaux de construction, les pales sont les éléments les plus sensibles à la foudre. Des pastilles métalliques en acier inoxydable permettant de capter les courants de foudre sont disposées à intervalles réguliers sur les deux faces des pales. Elles sont reliées entre elles par une tresse en cuivre, interne à la pale. Le pied de pale est muni d'une plaque métallique en acier inoxydable, sur une partie de son pourtour, raccordée à la tresse de cuivre. Un dispositif métallique flexible (nommé LCTU – Lightning Current Transfer Unit) assure la continuité électrique entre la pale et le châssis métallique de la nacelle (il s'agit d'un système de contact glissant comportant deux points de contact par pale). Ce châssis est relié électriquement à la tour, elle-même reliée au réseau de terre disposé en fond de fouille. En cas de coup de foudre sur une pale, le courant de foudre est ainsi évacué vers la terre via la fondation et des prises profondes.		
Indépendance	Oui		
Temps de réponse	Immédiat, dispositif passif		
Efficacité	100 %		
Tests	Avant la première mise en route de l'éolienne, une effectuée.	e mesure de mise	à la terre est
Maintenance	Contrôle visuel des pales et des éléments susceptiblinclus dans les opérations de maintenance, conform l'arrêté du 26 août 2011, modifiés par les arrêtés du 2021.	nément aux article	s 9 et 18II de

Tableau 28 : Mesures de sécurité pour protéger et intervenir en cas d'incendie

Fonction de sécurité	Protection et intervention incendie	N° de la fonction de sécurité	7
Mesures de sécurité	1. Sondes de température sur pièces mécaniques.		
	Suivant les niveaux d'alarme et les capteurs, la mac	hine peut être bri	dée ou mise à
	l'arrêt jusqu'à refroidissement.		
	Le redémarrage peut être effectué à distance, si les	s seuils de tempér	ature sont au-
	dessous des seuils d'alarme.		
	2. Système de détection incendie		
Description	1. Des sondes de température sont mises en place su	r les équipements a	ayant de fortes
	variations de température au cours de leur fonct	ionnement (paliers	et roulements
	des machines tournantes, enroulements du géné	rateur et du transf	ormateur). Ces
	sondes ont des seuils hauts qui, une fois dépass	és, conduisent à u	ne alarme et à
	une mise à l'arrêt du rotor.		
	2. Les éoliennes sont équipées par défaut d'un s	•	
	composé de plusieurs capteurs de fumée et de	e chaleur disposés	aux possibles
	points d'échauffements tels que :		
	La chambre du transformateurLe générateur		
	La cellule haute tensionLe convertisseur		
	- Les armoires électriques principales		
	 Le système de freinage. En cas de détection, une sirène est déclenchée, l'é 	éolienne est mise	à l'arrêt en «
	emergency stop » et isolement électrique par ouvertu		
	façon concomitante un message d'alarme est envoyé a	au centre de télésu	rveillance via le
	système de contrôle commande. Le système de déte	ction incendie est a	alimenté par le
	réseau secouru (UPS).		
	Vis-à-vis de la protection incendie, deux extincteurs so	ont présents dans l	a nacelle et un
	extincteur est disponible en pied de tour (utilisables p	oar le personnel su	r un départ de
	feu).		
Indépendance	Oui		
Temps de réponse	Temps de détection de l'ordre de la seconde		
	Le couplage des éléments de détection de fumée au s	système SCADA per	rmet l'envoi en
	temps réel d'alertes par SMS et par courriel, selor	les instructions o	de l'exploitant.

	L'exploitant sera ainsi en mesure de transmettre l'alerte aux services d'Urgence
	compétents dans un délai de 15 minutes suivant l'entrée en fonctionnement anormal de
	l'aérogénérateur conformément à l'article 23 de l'arrêté du 26 août 2011, modifié par
	l'arrêté du 22 juin 2020.
Efficacité	100%
Tests	Test des détecteurs de fumée à la mise en service puis tous les ans.
Tests Maintenance	Test des détecteurs de fumée à la mise en service puis tous les ans. Contrôle tous les ans du système de détection incendie pour être conforme à l'article 18
	· · · · · · · · · · · · · · · · · · ·
	Contrôle tous les ans du système de détection incendie pour être conforme à l'article 18
	Contrôle tous les ans du système de détection incendie pour être conforme à l'article 18 de l'arrêté du 26 août 2011, modifié par l'arrêté du 22 juin 2020. Le matériel incendie

Tableau 29 : Mesures de sécurité pour la prévention et la rétention des fuites

Fonction de sécurité	Prévention et rétention des fuites	N° de la fonction de sécurité	8
Mesures de sécurité	 Détecteurs de niveau d'huile et capteurs de pression Capteur de niveau du circuit de refroidissement (ni temporisation) Procédure d'urgence Kit antipollution Bacs de rétention 		vec arrêt après
Description	Nombreux détecteurs de niveau d'huile permettant d'huile et d'arrêter l'éolienne en cas d'urgence. Présence de plusieurs bacs collecteurs au niveau des plus présence de plusieurs bacs collecteurs au niveau des plus opérations de vidange font l'objet de procédures transfert des huiles s'effectue de manière sécurisée vidanger et le compose directement entre l'élément à vidanger et le compose directement entre l'élément à vidanger et le compose de grand pourront être utilisés afin : - de contenir et arrêter la propagation de la pollution d'absorber jusqu'à 20 litres de déversements accalicools) et produits chimiques (acides, bases, solvant - de récupérer les déchets absorbés. Si ces kits de dépollution s'avèrent insuffisants, une traitera le gravier souillé via les filières adéquates, prevêtement.	rincipaux composar spécifiques. Dans r ia un système de tu camion de vidange. ndes feuilles de tex ; cidentels de liquide ts);	nts. tous les cas, le uyauterie et de ktile absorbant es (huile, eau,
Indépendance	Oui		
Temps de réponse	Temps de détection de l'ordre de la seconde Mise en pause de la turbine < 1 min		
Efficacité	100%		
Tests	Tests des systèmes hydrauliques à la mise en s fonctionnement puis tous les ans suivant les manuels sont consignées dans le document IRF.		

	Dépendant du débit de fuite.
Maintenance	Les vérifications d'absence de fuites sont effectuées à chaque service planifié.
	Surveillance des niveaux d'huile via des outils d'analyses instantanées ou
	hebdomadaires. Inspection et maintenance curative en fonction du type de
	déclenchement d'alarme.

Tableau 30 : Mesures de sécurité pour prévenir les défauts de stabilité et d'assemblage de l'éolienne

Fonction de sécurité	Prévenir les défauts de stabilité de l'éolienne et les N° de la fonction défauts d'assemblage (construction – exploitation) de sécurité	
Mesures de sécurité	Contrôles réguliers des fondations et des différents assemblages de structure (ex : brides, joints, etc.) Procédures et contrôle qualité	
Description	La norme NF EN IEC 61 400-1 « Exigence pour la conception des aérogénérateurs » fixe les prescriptions propres à fournir « un niveau approprié de protection contre les dommages résultant de tout risque durant la durée de vie » de l'éolienne. Le constructeur remet à chacun de ses clients, un document « Type certificate » qui atteste de la conformité de l'éolienne fournie au standard NF EN IEC 61400-1 (édition juin 2006). Ainsi la nacelle, le moyeu, les fondations et la tour répondent aux standards IEC 61 400-1. Les pales respectent le standard IEC 61 400-1; 12; 23. De plus, des organismes compétents externes, mandatés par l'exploitant du parc, produisent des rapports attestant de la conformité de nos turbines à la fin de la phase d'installation. L'article R125-17 du code de la construction et de l'habitation fait référence au contrôle technique de construction. Il est obligatoire, à la charge de l'exploitant et réalisé par des organismes agréés par l'État. Ce contrôle assure la solidité des ouvrages ainsi que la sécurité des biens et des personnes. Les éoliennes sont protégées contre la corrosion due à l'humidité de l'air, selon la norme ISO 9223.	
Indépendance	Oui	
Temps de réponse	NA	
Efficacité	100%	
Tests	NA	
Maintenance	Le plan de maintenance prévoit le contrôle des brides de fixation, des brides de mât, des fixations des pales et le contrôle visuel du mât trois mois puis un an après la mise en service industrielle puis tous les trois ans, conformément à l'article 18I de l'arrêté du 26 août 2011, modifié par l'arrêté du 22 juin 2020.	

Tableau 31 : Mesures de sécurité pour prévenir les erreurs de maintenance

Fonction de sécurité	Prévenir les erreurs de maintenance	N° de la fonction de sécurité	10
Mesures de sécurité	Procédure de maintenance.		
Description	Préconisation du manuel de maintenance Formation du personnel		
Indépendance	Oui		
Temps de réponse	NA		
Efficacité	100%		
Tests	Traçabilité : rapport de service		
Maintenance	NA		

Tableau 32 : Mesures de sécurité pour prévenir la dégradation de l'état des équipements

Fonction de sécurité	Prévenir la dégradation de l'état des équipements	N° de la fonction de sécurité	11
Mesures de sécurité	 Procédure de contrôle des équipements lors des ma Suivi de données mesurées par les capteurs et sonde 		
Description	 Ce point est détaillé dans le chapitre dédié aux maintenances planifiées. L'intégralité des données mesurées par les capteurs et sondes présentes dans les éoliennes est suivie et enregistrée dans une base de données unique. Ces données sont traitées par des algorithmes en permanence afin de détecter, au plus tôt, les dégradations des équipements. Lorsqu'elle est nécessaire, une inspection de l'équipement soupçonné de se dégrader est planifiée. Les algorithmes de détection et de génération d'alarmes sont en amélioration continue. 		
Indépendance	Oui		
Temps de réponse	Entre 12 heures et 6 mois selon le type de dégradation		
Efficacité	NA		
Tests	Traçabilité : rapport de service		
Maintenance	NA		

Tableau 33 : Mesures de sécurité pour prévenir les risques de dégradation de l'éolienne en cas de vent fort

Fonction de sécurité	Prévenir les risques de dégradation de l'éolienne en cas de vent fort	N° de la fonction de sécurité	12
Mesures de sécurité	 Classe d'éolienne adaptée au site et au régime de vents Mise à l'arrêt sur détection de vent fort et freinage aérodynamique par le système de contrôle 		
Description	 En France, la classification de vents des éoliennes fait référence à la norme « IEC 61400-1 ». Les éoliennes sont dimensionnées pour chacune de ces classes. Il est donc important de faire correspondre la classe du site avec la classe de la turbine Les éoliennes sont mises à l'arrêt si la vitesse de vent mesurée dépasse la vitesse maximale de 25 m/s. Cet arrêt est réalisé par le frein aérodynamique de l'éolienne avec mise en drapeau des pales. Cette mise en drapeau est effectuée par le système d'orientation des pales « Vestas Pitch System ». 		
Indépendance	Oui		
Temps de réponse	Temps de détection de l'ordre de la seconde. Mise drapeau des pales < 1 min		
Efficacité	100%		
Tests	Pitch system testé tous les ans lors des maintenances p	oréventives.	
Maintenance	Tous les ans.		

L'ensemble des procédures de maintenance et des contrôles d'efficacité des systèmes sera conforme à l'arrêté du 26 août 2011, modifié par les arrêtés du 22 juin 2020 et du 10 décembre 2021.

Notamment, suivant une périodicité qui ne peut excéder un an, l'exploitant réalise une vérification de l'état fonctionnel des équipements de mise à l'arrêt, de mise à l'arrêt d'urgence et de mise à l'arrêt depuis un régime de survitesse en application des préconisations du constructeur de l'aérogénérateur.

7.7. <u>Conclusion de l'analyse préliminaire des risques</u>

A l'issue de l'analyse préliminaire des risques, l'étude de dangers précise quels scénarios sont retenus en vue de l'analyse détaillée des risques. Ne sont retenues que les séquences accidentelles dont l'intensité est telle que l'accident peut avoir des effets significatifs sur la vie humaine.

Dans le cadre de l'Analyse Préliminaire des Risques générique, trois catégories de scénarios sont à priori exclues de l'étude détaillée, en raison de leur faible intensité :

Tableau 34 : Scénarios exclus

Nom du scénario exclu	Justification
Incendie de l'éolienne (effets thermiques) I01 à I04	En cas d'incendie de nacelle, et en raison de la hauteur des nacelles, les effets thermiques ressentis au sol seront mineurs. Par exemple, dans le cas d'un incendie de nacelle située à 50 mètres de hauteur, la valeur seuil de 3 kW/m² n'est pas atteinte. Dans le cas d'un incendie au niveau du mât les effets sont également mineurs et l'arrêté du 26 août 2011, modifié par l'arrêté du 22 juin 2020, encadre déjà largement la sécurité des installations. Ces effets ne sont donc pas étudiés dans l'étude détaillée des risques. Néanmoins il peut être redouté que des chutes d'éléments (ou des projections) interviennent lors d'un incendie. Ces effets sont étudiés avec les projections et les chutes d'éléments.
Incendie du poste de livraison IO5 à IO7	En cas d'incendie du poste de livraison, les effets ressentis à l'extérieur des bâtiments (poste de livraison) seront mineurs ou inexistants du fait notamment de la structure en béton des postes de livraison. Il est également noté que la réglementation encadre déjà largement la sécurité de ces installations (l'arrêté du 26 Août 2011, modifié par l'arrêté du 22 juin 2020, impose le respect des normes NF C 15-100, NF C 13-100 et NF C 13-200).
Infiltration d'huile dans le sol F01 à F02	En cas d'infiltration d'huiles dans le sol, les volumes de substances libérés dans le sol restent mineurs.

Les cinq catégories de scénarios étudiées dans l'étude détaillée des risques sont les suivantes :

- ♣ Projection de tout ou une partie de pale ;
- ★ Effondrement de l'éolienne ;
- ★ Chute d'éléments de l'éolienne ;
- ★ Chute de glace ;
- ♣ Projection de glace.

Ces scénarios regroupent plusieurs causes et séquences d'accident. En estimant la probabilité, gravité, cinétique et intensité de ces événements, il est possible de caractériser les risques pour toutes les séquences d'accidents.

8. Etude détaillée des risques

L'étude détaillée des risques vise à caractériser les scénarios retenus à l'issue de l'analyse préliminaire des risques en termes de probabilité, cinétique, intensité et gravité. Son objectif est donc de préciser le risque généré par l'installation et d'évaluer les mesures de maîtrise des risques mises en œuvre. L'étude détaillée permet de vérifier l'acceptabilité des potentiels risques générés par l'installation.

8.1. Rappel des définitions

Les règles méthodologiques applicables pour la détermination de l'intensité, de la gravité et de la probabilité des phénomènes dangereux sont précisées dans l'arrêté ministériel du 29 septembre 2005.

Cet arrêté ne prévoit de détermination de l'intensité et de la gravité que pour les effets de surpression, de rayonnement thermique et de toxicité.

Cet arrêté est complété par la circulaire du 10 mai 2010 récapitulant les règles méthodologiques applicables aux études de dangers, à l'appréciation de la démarche de réduction du risque à la source et aux plans de prévention des risques technologiques (PPRT) dans les installations classées en application de la loi du 30 juillet 2003.

Cette circulaire précise en son point 1.2.2 qu'à l'exception de certains explosifs pour lesquels les effets de projection présentent un comportement caractéristique à faible distance, les projections et chutes liées à des ruptures ou fragmentations ne sont pas modélisées en intensité et gravité dans les études de dangers.

Force est néanmoins de constater que ce sont les seuls phénomènes dangereux susceptibles de se produire sur des éoliennes.

Afin de pouvoir présenter des éléments au sein de cette étude de dangers, il est proposé de recourir à la méthode ad hoc préconisée par le guide technique national relatif à l'étude de dangers dans le cadre d'un parc éolien dans sa version de mai 2012. Cette méthode est inspirée des méthodes utilisées pour les autres phénomènes dangereux des installations classées, dans l'esprit de la loi du 30 juillet 2003.

Ainsi, l'étude de dangers doit caractériser chaque scénario d'accident majeur potentiel retenu dans l'étude détaillée des risques en fonction des paramètres suivants :

★ Cinétique ;

▲ Intensité;

♣ Probabilité.

L'étude porte en effet sur la probabilité que l'accident se produise, la vitesse avec laquelle il produit des effets et à laquelle les secours sont en mesure d'intervenir (cinétique), l'effet qu'il aura s'il se produit (intensité) et le nombre de personnes exposées (gravité).

Cette première partie de l'étude détaillée des risques consiste donc à rappeler les définitions de chacun de ces paramètres, en lien avec les références réglementaires correspondantes.

8.1.1. <u>Cinétique</u>

La cinétique d'un accident est la vitesse d'enchaînement des événements constituant une séquence accidentelle, de l'événement initiateur aux conséquences sur les éléments vulnérables.

Selon l'article 8 de l'arrêté du 29 septembre 2005 [13], la cinétique peut être qualifiée de « lente » ou de « rapide ». Dans le cas d'une cinétique lente, les personnes ont le temps d'être mises à l'abri à la suite de l'intervention des services de secours. Dans le cas contraire, la cinétique est considérée comme rapide.

Dans le cadre d'une étude de dangers pour des aérogénérateurs, il est supposé, de manière prudente, que tous les accidents considérés ont une cinétique rapide. Ce paramètre ne sera donc pas détaillé à nouveau dans chacun des phénomènes redoutés étudiés par la suite.

8.1.2. Intensité

L'intensité des effets des phénomènes dangereux est définie par rapport à des valeurs de référence exprimées sous forme de seuils d'effets toxiques, d'effets de surpression, d'effets thermiques et d'effets liés à l'impact d'un projectile, pour les hommes et les structures (article 9 de l'arrêté du 29 septembre 2005 [13]).

On constate que les scénarios retenus au terme de l'analyse préliminaire des risques pour les parcs éoliens sont des scénarios de projection (de glace ou de toute ou partie de pale), de chutes d'éléments (glace ou toute ou partie de pale) ou effondrement de machine.

Or, les seuils d'effets proposés dans l'arrêté du 29 Septembre 2005 [13] caractérisent des phénomènes dangereux dont l'intensité s'exerce dans toutes les directions autour de l'origine du phénomène, pour des effets de surpression, toxiques ou thermiques. Ces seuils ne sont donc pas adaptés aux accidents générés par des aérogénérateurs.

Dans le cas de scénarios de projection, l'annexe II de cet arrêté précise : « Compte tenu des connaissances limitées en matière de détermination et de modélisation des effets de projection, l'évaluation des effets de projection d'un phénomène dangereux nécessite, le cas échéant, une analyse, au cas par cas, justifiée par l'exploitant. Pour la délimitation des zones d'effets sur l'homme ou sur les structures des installations classées, il n'existe pas à l'heure actuelle de valeur de référence. Lorsqu'elle s'avère nécessaire, cette délimitation s'appuie sur une analyse au cas par cas proposée par l'exploitant ».

C'est pourquoi, pour chacun des événements accidentels retenus (chute d'éléments, chute de glace, effondrement et projection), deux valeurs de référence ont été retenues :

★ 5% d'exposition : seuils des effets très importants

★ 1% d'exposition : seuil des effets importants

Le degré d'exposition est défini comme le rapport entre la surface atteinte par un élément chutant ou projeté et la surface de la zone exposée à la chute ou à la projection.

Tableau 35: Niveaux d'intensité

Intensité	Degré d'exposition
Exposition très forte	Supérieur à 5%
Exposition forte	Compris entre 1% et 5%
Exposition modérée	Inférieur à 1%

Les zones d'effets sont définies pour chaque événement accidentel comme la surface exposée à cet événement.

8.1.3. <u>Gravité</u>

Les niveaux de gravité à retenir dans une étude de dangers sont décrits dans l'annexe III de l'arrêté du 29 Septembre 2005. Ils sont déterminés en fonction du nombre équivalent de personnes permanentes dans chacune des zones d'effet définies dans le paragraphe précédent.

Tableau 36 : Niveaux de gravité

	Zone d'effet d'un événement accidentel engendrant une exposition très forte	Zone d'effet d'un événement accidentel engendrant une exposition forte	Zone d'effet d'un événement accidentel engendrant une exposition modérée
« Désastreux »	Plus de 10 personnes exposées	Plus de 100 personnes exposées	Plus de 1000 personnes exposées
« Catastrophique »	Moins de 10 personnes exposées	Entre 10 et 100 personnes exposées	Entre 100 et 1000 personnes exposées
« Important »	Au plus 1 personne exposée	Entre 1 et 10 personnes exposées	Entre 10 et 100 personnes exposées
« Sérieux »	Aucune personne exposée	Au plus 1 personne exposée	Moins de 10 personnes exposées
« Modéré »	Pas de zone de létalité en dehors de l'établissement	Pas de zone de létalité en dehors de l'établissement	Présence humaine exposée inférieure à « une personne »

8.1.4. <u>Probabilité</u>

L'annexe I de l'arrêté du 29 Septembre 2005 définit les classes de probabilité qui doivent être utilisées dans les études de dangers pour caractériser les scénarios d'accidents majeurs :

Tableau 37 : Niveaux de probabilités

Niveaux	Echelle qualitative	Echelle quantitative (probabilité annuelle)
Α	Courant Se produit sur le site considéré et/ou peut se produire à plusieurs reprises pendant la durée de vie des installations, malgré d'éventuelles mesures correctives.	P >10 ⁻²
В	Probable S'est produit et/ou peut se produire pendant la durée de vie des installations.	$10^{-3} < P \le 10^{-2}$
С	Improbable Evénement similaire déjà rencontré dans le secteur d'activité ou dans ce type d'organisation au niveau mondial, sans que les éventuelles corrections intervenues depuis apportent une garantie de réduction significative de sa probabilité.	10 ⁻⁴ < P ≤ 10 ⁻³
D	Rare S'est déjà produit mais a fait l'objet de mesures correctives réduisant significativement la probabilité.	10 ⁻⁵ < P ≤ 10 ⁻⁴
E	Extrêmement rare Possible mais non rencontré au niveau mondial. N'est pas impossible au vu des connaissances actuelles.	≤10 ⁻⁵

Dans le cadre de l'étude de dangers des parcs éoliens, la probabilité de chaque événement accidentel identifié pour une éolienne est déterminée en fonction :

- → De la bibliographie relative à l'évaluation des risques pour des éoliennes
- → Du retour d'expérience français
- → Des définitions qualitatives de l'arrêté du 29 Septembre 2005

Il convient de noter que la probabilité qui sera évaluée pour chaque scenario d'accident correspond à la probabilité qu'un événement redouté se produise sur l'éolienne (probabilité de départ) et non à la probabilité que cet événement produise un accident suite à la présence d'un véhicule ou d'une personne au point d'impact (probabilité d'atteinte). En effet, l'arrêté du 29 septembre 2005 impose une évaluation des probabilités de départ uniquement.

Cependant, on pourra rappeler que la probabilité qu'un accident sur une personne ou un bien se produise est très largement inférieure à la probabilité de départ de l'événement redouté.

La probabilité d'accident est en effet le produit de plusieurs probabilités :

Paccident = PERC x Porientation x Protation x Patteinte x Pprésence

PERC = probabilité que l'événement redoute central (défaillance) se produise = probabilité de départ

Porientation = probabilité que l'éolienne soit orientée de manière à projeter un élément lors d'une défaillance dans la direction d'un point donne (en fonction des conditions de vent notamment)

Protation = probabilité que l'éolienne soit en rotation au moment où l'événement redoute se produit (en fonction de la vitesse du vent notamment)

Patteinte = probabilité d'atteinte d'un point donné autour de l'éolienne (sachant que l'éolienne est orientée de manière à projeter un élément en direction de ce point et qu'elle est en rotation)

Pprésence = probabilité de présence d'un enjeu donne au point d'impact sachant que l'élément est projeté en ce point donné

Dans le cadre des études de dangers des éoliennes, une approche majorante assimilant la probabilité d'accident (Paccident) à la probabilité de l'événement redouté central (PERC) a été retenue.

8.2. Caractérisation des scénarios retenus

Les dimensions utilisées pour les calculs suivants seront les dimensions majorantes connues entre celle des éléments de la Vestas V162 et de la Nordex N163.

Ainsi on retiendra:

Hauteur de moyeu	Н	119 m
Hauteur de mât + nacelle	Hnacelle	124 m
Largeur du mât	L	6,2 m
Longueur de pale	R	79,7 m
Largeur de base de la pale	LB	4,7 m
Diamètre du rotor	D	163 m

8.2.1. <u>Effondrement de l'éolienne</u>

Zone d'effet :

La zone d'effet de l'effondrement d'une éolienne correspond à une surface circulaire de rayon égal à la hauteur totale de l'éolienne en bout de pale, soit 200 m dans le cas des éoliennes du parc de Blanzay 2 – Energie.

Cette méthodologie se rapproche de celles utilisées dans la bibliographie (références [5] et [6]). Les risques d'atteinte d'une personne ou d'un bien en dehors de cette zone d'effet sont négligeables et ils n'ont jamais été relevés dans l'accidentologie ou la littérature spécialisée.

<u>Intensité :</u>

Pour le phénomène d'effondrement de l'éolienne, le degré d'exposition correspond au ratio entre la surface totale balayée par le rotor et la surface du mât non balayée par le rotor, d'une part, et la superficie de la zone d'effet du phénomène, d'autre part.

Le tableau ci-dessous permet d'évaluer l'intensité du phénomène d'effondrement d'une éolienne dans le cas de la ferme éolienne de Blanzay 2 - Energie. ZI est la zone d'impact, ZE est la zone d'effet, R est la longueur de pale (R = 79,7 m), H la hauteur du moyeu (H = 119m), Hnacelle la hauteur du mât et de la nacelle (Hnacelle = 124m), D le diamètre du rotor (D=163m), L la largeur du mat (L = 6,2m) et LB la largeur maximale de la pale (LB = 4,7m).

Tableau 38 : Niveau d'intensité pour le scénario d'effondrement de l'éolienne

Effondrement de l'éolienne			
(dans un rayon inférieur ou égal à la hauteur totale de l'éolienne en bout de pale, soit 200 m)			e pale, soit 200 m)
Zone d'impact en m²	Zone d'effet du phénomène étudié en m²	Degré d'exposition du phénomène étudié en %	Intensité
$Z_1 = (Hnacelle \times L) + 3 \times R \times LB/2 = 1331 \text{ m}^2$	$Z_E = \pi \times (H+D/2)^2 =$ 126 293 m ²	D = Zı / ZE x 100 = 1,05 %	Exposition forte

L'intensité du phénomène d'effondrement est nulle au-delà de la zone d'effondrement.

Gravité :

En fonction de cette intensité et des définitions issues de l'arrêté du 29 septembre 2005 (voir paragraphe 8.1.3), il est possible de définir les différentes classes de gravité pour le phénomène d'effondrement, dans le rayon inférieur ou égal à la hauteur totale de l'éolienne :

- Plus de 100 personnes exposées à « Désastreux »
- ★ Entre 10 et 100 personnes exposées à « Catastrophique »
- Entre 1 et 10 personnes exposées à « Important »
- ▲ Au plus 1 personne exposée à « Sérieux »
- A Pas de zone de létalité en dehors de l'établissement à « Modéré »

Dans un rayon de 200 m autour des éoliennes, la surface de 12,6 ha est constituée de champs, de chemins agricoles et de voies de circulation non structurantes. Les terrains sont donc considérés comme aménagés mais peu fréquentés et le nombre de personnes permanentes est de 1 personne/10 ha.

Le tableau suivant indique, pour chaque aérogénérateur, le nombre de personnes exposées dans la zone d'effet du phénomène d'effondrement et la gravité associée :

Tableau 39 : Niveau de gravité pour le scénario d'effondrement de l'éolienne

Effondrement de l'éolienne		
(dans un rayon	inférieur ou égal à la hauteur totale de l'éolienne en bout de	e pale, soit 200 m)
Eolienne	Nombre de personnes permanentes (ou équivalent personnes permanentes)	Gravité
E01	(12,6 x 1/10) = 1,26	Important
E02	(12,6 x 1/10) = 1,26	Important
E03	(12,6 x 1/10) = 1,26	Important
E04	(12,6 x 1/10) = 1,26	Important

Probabilité :

Pour l'effondrement d'une éolienne, les valeurs retenues dans la littérature sont détaillées dans le tableau suivant :

Tableau 40 : Niveau de probabilité pour le scénario d'effondrement de l'éolienne

Source	Fréquence	Justification
Guide for risk based zoning of wind turbines [5]	4,5 x 10 ⁻⁴	Retour d'expérience
Specification of minimum distances [6]	1.8×10^{-4} (effondrement de la nacelle et de la tour)	Retour d'expérience

Ces valeurs correspondent à une classe de probabilité « C » (improbable) selon l'arrêté du 29 septembre 2005.

Le retour d'expérience français montre également une classe de probabilité « C ». En effet, il a été recensé seulement 7 événements pour 15 667 années d'expérience¹, soit une probabilité de 4,47 x 10⁻⁴ par éolienne et par an.

Ces événements correspondent également à la définition qualitative de l'arrêté du 29 septembre 2005 d'une probabilité « C », à savoir : « Evénement similaire déjà rencontré dans le secteur d'activité ou dans ce type d'organisation au niveau mondial, sans que les éventuelles corrections intervenues depuis apportent une garantie de réduction significative de sa probabilité ». Une probabilité de classe « C » est donc retenue par défaut pour ce type d'événement. Néanmoins, les dispositions constructives des éoliennes ayant fortement évoluées, le niveau de fiabilité est aujourd'hui bien meilleur. Des mesures de maîtrise des risques supplémentaires ont été mises en place sur les machines récentes et permettent de réduire significativement la probabilité d'effondrement. Ces types de mesures de sécurité sont notamment :

- Respect intégral des dispositions de la norme IEC 61 400-1;
- ★ Contrôles réguliers des fondations et des différentes pièces d'assemblages ;
- ★ Système de détection des survitesses et système redondant de freinage ;
- ★ Système de détection des vents forts et un système redondant de freinage et de mise en sécurité des installations.

De manière générale, le respect des prescriptions de l'arrêté du 26 août 2011, modifié par les arrêtés du 22 juin 2020 et du 10 décembre 2021, relatif aux installations éoliennes soumises à autorisation permet de s'assurer que les éoliennes font l'objet de mesures réduisant significativement la probabilité d'effondrement.

Il est considéré que la classe de probabilité de l'accident est « D » (rare), à savoir : « S'est produit mais a fait l'objet de mesures correctives réduisant significativement la probabilité ».

Acceptabilité :

Dans le cas d'implantation d'éoliennes équipées des technologies récentes, compte tenu de la classe de probabilité d'un effondrement, on pourra conclure à l'acceptabilité de ce phénomène si moins de 10 personnes sont exposées.

Le tableau suivant rappelle, pour chaque aérogénérateur de la Ferme éolienne de Blanzay 2 - Energie, la gravité associée et le niveau de risque (acceptable/inacceptable) :

¹ Une année d'expérience correspond à une éolienne observée pendant une année. Ainsi, si on a observé une éolienne pendant 5 ans et une autre pendant 7 ans, on aura au total 12 années d'expérience.

Tableau 41 : Niveau de risque pour le scénario d'effondrement de l'éolienne

Effondrement de l'éolienne (dans un rayon inférieur ou égal à la hauteur totale de l'éolienne en bout de pale, soit 200 m) **Eolienne** Gravité Niveau de risque E01 **Important** Acceptable E02 **Important** Acceptable E03 **Important** Acceptable E04 Important Acceptable

Ainsi, pour la ferme éolienne de Blanzay 2 - Energie, le phénomène d'effondrement des éoliennes constitue un risque acceptable pour les personnes.

8.2.2. Chute de glace

Considérations générales :

Les périodes de gel et l'humidité de l'air peuvent entrainer, dans des conditions de température et d'humidité de l'air bien particulières, une formation de givre ou de glace sur l'éolienne, ce qui induit de potentiels risques de chute de glace.

Selon l'étude WECO [15], une grande partie du territoire français (hors zones de montagne) est concernée par moins d'un jour de formation de glace par an. Certains secteurs du territoire comme les zones côtières affichent des moyennes qui varient entre 2 et 7 jours de formation de glace par an.

Lors des périodes de dégel qui suivent les périodes de grand froid, des chutes de glace peuvent se produire depuis la structure de l'éolienne (nacelle, pales). Normalement, le givre qui se forme en fine pellicule sur les pales de l'éolienne fond avec le soleil. En cas de vents forts, des morceaux de glace peuvent se détacher. Ils se désagrègent généralement avant d'arriver au sol. Ce type de chute de glace est similaire à ce qu'on observe sur d'autres bâtiments et infrastructures.

Zone d'effet :

Le risque de chute de glace est cantonné à la zone de survol des pales, soit un disque de rayon égal à un demidiamètre de rotor autour du mat de l'éolienne. Pour le parc éolien, la zone d'effet a donc un rayon de 81,5 mètres. Cependant, il convient de noter que, lorsque l'éolienne est à l'arrêt, les pales n'occupent qu'une faible partie de cette zone.

<u>Intensité :</u>

Pour le phénomène de chute de glace, le degré d'exposition correspond au ratio entre la surface d'un morceau de glace et la superficie de la zone d'effet du phénomène (zone de survol).

Le tableau ci-dessous permet d'évaluer l'intensité du phénomène de chute de glace dans le cas de la ferme éolienne de Blanzay 2 - Energie. Zi est la zone d'impact, Zi est la zone d'effet, d est le degré d'exposition, D est le diamètre du rotor (D = 163 m), SG est la surface du morceau de glace majorant (SG = 1 m²).

Tableau 42 : Niveau de d'intensité pour le scénario de chute de glace

Chute de glace (dans un rayon inférieur ou égal à D/2 = zone de survol, soit 81,5 m)			
Zone d'impact en m² Zone d'impact en m² étudié en m² Degré d'exposition du Intensité phénomène étudié en %			
Zı = SG = 1 m²	$Z_E = \pi \times (D/2)^2 = 20.867 \text{ m}^2$	d = Zı / Zɛ x 100 = 0,005 % (< 1 %)	Exposition modérée

L'intensité est nulle hors de la zone de survol.

Gravité :

En fonction de cette intensité et des définitions issues de l'arrêté du 29 septembre 2005 (voir paragraphe 8.1.3), il est possible de définir les différentes classes de gravité pour le phénomène de chute de glace, dans la zone de survol de l'éolienne :

- → Plus de 1000 personnes exposées à « Désastreux »
- ★ Entre 100 et 1000 personnes exposées à « Catastrophique »
- ★ Entre 10 et 100 personnes exposées à « Important »
- → Moins de 10 personnes exposées à « Sérieux »
- Présence humaine exposée inférieure à « une personne » à « Modéré »

Dans un rayon de 81,5 m autour des éoliennes, la surface de 2,09 ha est occupée par des champs et les aires de maintenance des éoliennes. Les terrains sont considérés comme aménagés mais peu fréquentés. Le nombre de personnes exposées est donc de 1 personne/10 ha.

Le tableau suivant indique, pour chaque aérogénérateur, le nombre de personnes exposées dans la zone d'effet du phénomène de chute de glace et la gravité associée :

Tableau 43 : Niveau de gravité pour le scénario de chute de glace

Chute de glace (dans un rayon inférieur ou égal à D/2 = zone de survol, soit 81,5 m)		
Nombre de personnes permanentes (ou équivalent Gravité personnes permanentes)		Gravité
E01	(2,09 x 1/10) = 0,21	Modéré
E02	(2,09 x 1/10) = 0,21	Modéré
E03	(2,09 x 1/10) = 0,21	Modéré
E04	(2,09 x 1/10) = 0,21	Modéré

Probabilité:

De façon conservatrice, il est considéré que la probabilité est de classe « A » (courant), c'est-à-dire une probabilité supérieure à 10⁻².

Acceptabilité :

Avec une classe de probabilité de A, le risque de chute de glace pour chaque aérogénérateur est évalué comme acceptable dans le cas d'une gravité « Modérée » qui correspond pour cet événement à un nombre de personnes permanentes (ou équivalent) inférieur à 1.

Le tableau suivant rappelle, pour chaque aérogénérateur de la ferme éolienne, la gravité associée et le niveau de risque (acceptable/inacceptable) :

Tableau 44 : Niveau de risque pour le scénario de chute de glace

Chute de glace		
(dans un rayon inférieur ou égal à D/2 = zone de survol, soit 81,5 m)		
Eolienne	Gravité	Niveau de risque
E01	Modéré	Acceptable
E02	Modéré	Acceptable
E03	Modéré	Acceptable
E04	Modéré	Acceptable

Ainsi, pour la Ferme éolienne de Blanzay 2 - Energie, le phénomène de chute de glace des éoliennes constitue un risque acceptable pour les personnes.

Il convient également de rappeler que, conformément à l'article 14 de l'arrêté du 26 août 2011 relatif aux installations éoliennes soumises à autorisation, modifié par l'arrêté du 22 juin 2020, un panneau informant le public des risques (et notamment des risques de chute de glace) sera installé sur le chemin d'accès de chaque aérogénérateur, c'est-à-dire en amont de la zone d'effet de ce phénomène. Cette mesure permettra de réduire les risques pour les personnes potentiellement présentes sur le site lors des épisodes de grand froid.

8.2.3. Chute d'éléments de l'éolienne

Zone d'effet :

La chute d'éléments comprend la chute de tous les équipements situés en hauteur : trappes, boulons, morceaux de pales ou pales entières. Le cas majorant est ici le cas de la chute de pale. Il est retenu dans l'étude détaillée des risques pour représenter toutes les chutes d'éléments.

Le risque de chute d'éléments est cantonné à la zone de survol des pales, c'est-à-dire une zone d'effet correspondant à un disque de rayon égal à un demi-diamètre de rotor.

<u>Intensité :</u>

Pour le phénomène de chute d'éléments, le degré d'exposition correspond au ratio entre la surface d'un élément (cas majorant d'une pale entière se détachant de l'éolienne) et la superficie de la zone d'effet du phénomène (zone de survol).

Le tableau ci-dessous permet d'évaluer l'intensité du phénomène de chute d'éléments de l'éolienne dans le cas du parc éolien de Blanzay 2 - Energie. Z_I est la zone d'impact, Z_E est la zone d'effet, d est le degré d'exposition, R est la longueur de pale (R = 79,7 m), D est le diamètre du rotor (D = 163 m) et LB la largeur de la base de la pale (LB = 4,7 m).

Tableau 45 : Niveau d'intensité pour le scénario de chute d'éléments de l'éolienne

Chute d'éléments de l'éolienne (Dans un rayon inférieur ou égal à D/2 = zone de survol, soit 81,5 m)			
Zone d'impact en m²	Zone d'effet du phénomène étudié en m²	Degré d'exposition du phénomène étudié en %	Intensité
$Z_1 = R \times LB/2 = 187 \text{ m}^2$	$Z_E = \pi \times (D/2)^2 = 20 867 \text{ m}^2$	d = Z _I /Z _E x 100 = 0,90 % (x<1%)	Exposition modérée

L'intensité en dehors de la zone de survol est nulle.

Gravité :

En fonction de cette intensité et des définitions issues de l'arrêté du 29 septembre 2005 (voir paragraphe 8.1.3), il est possible de définir les différentes classes de gravité pour le phénomène de chute d'éléments de l'éolienne, dans la zone de survol de l'éolienne :

Si le phénomène de chute d'éléments engendre une zone d'exposition modérée :

- → Plus de 1000 personnes exposées à « Désastreux »
- ★ Entre 100 et 1000 personnes exposées à « Catastrophique »
- Lentre 10 et 100 personnes exposées à « Important »
- ★ Moins de 10 personnes exposées à « Sérieux »
- → Présence humaine inférieure à « une personne » à « Modéré »

De même que le scénario de chute de glace, dans un rayon de 81,5 m autour des éoliennes, la surface de 2,09 ha est occupée par des champs et les aires de maintenance des éoliennes. Les terrains sont considérés comme aménagés mais peu fréquentés. Le nombre de personnes exposées est donc de 1 personne/10 ha.

Le tableau suivant indique, pour chaque aérogénérateur, le nombre de personnes exposées dans la zone d'effet du phénomène de chute d'éléments de l'éolienne et la gravité associée :

Tableau 46 : Niveau de gravité pour le scénario de chute d'éléments de l'éolienne

Chute d'éléments de l'éolienne (dans un rayon inférieur ou égal à D/2 = zone de survol, soit 81,5 m)		
Eolienne	Nombre de personnes permanentes (ou équivalent personnes permanentes)	Gravité
E01	(2,09 x 1/10) = 0,21	Modéré
E02	(2,09 x 1/10) = 0,21	Modéré
E03	(2,09 x 1/10) = 0,21	Modéré
E04	(2,09 x 1/10) = 0,21	Modéré

Probabilité :

Peu d'élément sont disponibles dans la littérature pour évaluer la fréquence des événements de chute de pales ou d'éléments d'éoliennes.

Le retour d'expérience connu en France montre que ces événements ont une classe de probabilité « C » (2 chutes et 5 incendies pour 15 667 années d'expérience, soit 4.47 x 10⁻⁴événement par éolienne et par an).

Ces événements correspondent également à la définition qualitative de l'arrêté du 29 Septembre 2005 d'une probabilité « C » : « Evénement similaire déjà rencontré dans le secteur d'activité ou dans ce type d'organisation au niveau mondial, sans que les éventuelles corrections intervenues depuis apportent une garantie de réduction significative de sa probabilité ».

Une probabilité de classe « C » est donc retenue par défaut pour ce type d'événement.

Acceptabilité :

Avec une classe de probabilité « C », le risque de chute d'éléments pour chaque aérogénérateur est évalué comme acceptable dans le cas d'un nombre de personnes permanentes (ou équivalent) inférieur à 10 dans la zone d'effet.

Le tableau suivant rappelle, pour chaque aérogénérateur du parc éolien, la gravité associée et le niveau de risque (acceptable/inacceptable) :

Tableau 47 : Niveau de risque pour le scénario de chute d'éléments de l'éolienne

Chute d'éléments de l'éolienne (dans un rayon inférieur ou égal à D/2 = zone de survol, soit 81,5 m)			
Eolienne	Gravité	Niveau de risque	
E01	Modéré	Acceptable	
E02	Modéré	Acceptable	
E03	Modéré	Acceptable	
E04	Modéré	Acceptable	

Ainsi, pour la Ferme éolienne de Blanzay 2 - Energie, le phénomène de chute d'éléments de l'éolienne constitue un risque acceptable pour les personnes.

8.2.4. Projection de pales ou de fragments de pales

Zone d'effet :

Dans l'accidentologie française rappelée en annexe, la distance maximale relevée et vérifiée pour une projection de fragment de pale est de 380 mètres par rapport au mât de l'éolienne. On constate que les autres données disponibles dans cette accidentologie montrent des distances d'effet inférieures.

L'accidentologie éolienne mondiale manque de fiabilité car la source la plus importante (en termes statistiques) est une base de données tenue par une association écossaise majoritairement opposée à l'énergie éolienne [3]. L'analyse de ce recueil d'accidents indique une distance maximale de projection de l'ordre de 500 mètres à deux exceptions près :

- ↓ 1300 m rapporté pour un accident à Hundhammerfjellet en Norvège le 20/01/2006,
- ↓ 1000 m rapporté pour un accident à Burgos en Espagne le 09/12/2000.

Toutefois, pour ces deux accidents, les sources citées ont été vérifiées par le SER-FEE et aucune distance de projection n'y était mentionnée. Les distances ont ensuite été vérifiées auprès des constructeurs concernés et dans les deux cas elles n'excédaient pas 300 m.

Ensuite, pour l'ensemble des accidents pour lesquels une distance supérieure à 400 m était indiquée, les sources mentionnées dans le recueil ont été vérifiées de manière exhaustive (articles de journal par exemple), mais aucune d'elles ne mentionnait ces mêmes distances de projection. Quand une distance était écrite dans la source, il pouvait s'agir par exemple de la distance entre la maison la plus proche et l'éolienne, ou du périmètre de sécurité mis en place par les forces de l'ordre après l'accident, mais en aucun cas de la distance de projection réelle.

Pour autant, des études de risques déjà réalisées dans le monde ont utilisé une distance de 500 mètres, en particulier les études [5] et [6].

Sur la base de ces éléments et de façon conservatrice, une distance d'effet de 500 mètres est considérée comme distance raisonnable pour la prise en compte des projections de pales ou de fragments de pales dans le cadre des études de dangers des parcs éoliens.

<u>Intensité :</u>

Pour le phénomène de projection de pale ou de fragment de pale, le degré d'exposition correspond au ratio entre la surface d'un élément (cas majorant d'une pale entière) et la superficie de la zone d'effet du phénomène (500 m).

Le tableau ci-dessous permet d'évaluer l'intensité du phénomène de chute d'éléments de l'éolienne dans le cas du parc éolien de Blanzay 2 - Energie. Zi est la zone d'impact, Zi est la zone d'effet, d est le degré d'exposition, R est la longueur de pale (R = 79,7 m) et LB est la largeur de la base de la pale (LB = 4,7 m).

Tableau 48 : Niveau d'intensité pour le scénario de projection de pale ou de fragment de pale

Projection de pale ou de fragment de pale (zone de 500 m autour de chaque éolienne)						
Zone d'effet du phénomène Degré d'exposition du Intensité étudié en m² phénomène étudié en %						
$Z_{I} = R \times LB/2 = 187 \text{ m}^{2}$ $Z_{E} = \pi \times R^{2} = 19 956 \text{ m}^{2}$ $d = Z_{I}/Z_{E} \times 100 = 0.9 \% (< 1 \%)$ Exposition modérée						

Gravité :

En fonction de cette intensité et des définitions issues de l'arrêté du 29 septembre 2005 (voir paragraphe 8.1.3), il est possible de définir les différentes classes de gravité pour le phénomène de projection, dans la zone de 500 m autour de l'éolienne :

- → Plus de 1000 personnes exposées : « Désastreux » ;
- ★ Entre 100 et 1000 personnes exposées : « Catastrophique » ;
- Lentre 10 et 100 personnes exposées : « Important » ;
- Moins de 10 personnes exposées : « Sérieux » ;
- → Présence humaine exposée inférieure à une personne : « Modéré ».

Dans un rayon de 500 m autour des éoliennes E02, E03 et E04, la surface de 78,5 ha comprend des champs, des chemins agricoles et des voies de circulation non structurantes (< 2000 véhicules / jour). Cette zone fait donc partie de la catégorie des terrains aménagés mais peu fréquentés (voir paragraphe 3.4 Cartographie de synthèse). Pour chaque éolienne, 1 personne/10 ha est prise en compte.

Dans un rayon de 500 m autour de l'éolienne E01, la surface de 78,54 ha comprend également des champs et voiries non structurantes mais également l'éolienne E01 du parc éolien de Blanzay autorisé. Deux personnes exposées supplémentaires sont donc prises en compte.

Le tableau suivant indique, pour chaque aérogénérateur, le nombre de personnes exposées dans la zone d'effet du phénomène de projection et la gravité associée :

Tableau 49 : Niveau de gravité pour le scénario de projection de pale ou de fragment de pale

Projection de pale ou de fragment de pale (zone de 500 m autour de chaque éolienne)					
Nombre de personnes permanentes (ou équivalent Eolienne personnes permanentes) Gravité					
E01	(78,54 x 1/10) + 2 = 9,85	Sérieux			
E02	(78,54 x 1/10) = 7,85	Sérieux			
E03	(78,54 x 1/10) = 7,85	Sérieux			
E04	(78,54 x 1/10) = 7,85	Sérieux			

Probabilité :

Les valeurs retenues dans la littérature pour une rupture de tout ou partie de pale sont détaillées dans le tableau suivant :

Tableau 50 : Niveau de probabilité pour le scénario de projection de pale ou de fragment de pale

Source	Fréquence	Justification
Site specific hazard assesment for a wind farm project [4]	1 x 10 ⁻⁶	Respect de l'Eurocode EN 1990 - Basis of structural design
Guide for risk based zoning of wind turbines [5]	1,1 x 10 ⁻³	Retour d'expérience au Danemark (1984- 1992) et en Allemagne (1989-2001)
Specification of minimum distances [6]	6,1 x 10 ⁻⁴	Recherche Internet des accidents entre 1996 et 2003

Ces valeurs correspondent à des classes de probabilité de « B » (probable), « C » (improbable) ou « E » (extrêmement rare).

Le retour d'expérience français montre également une classe de probabilité « C » (12 événements pour 15 667 années d'expérience, soit 7,66 x 10⁻⁴ événement par éolienne et par an).

Ces événements correspondent également à la définition qualitative de l'arrêté du 29 Septembre 2005 d'une probabilité « C » : « Evénement similaire déjà rencontré dans le secteur d'activité ou dans ce type d'organisation au niveau mondial, sans que les éventuelles corrections intervenues depuis apportent une garantie de réduction significative de sa probabilité ».

Une probabilité de classe « C » est donc retenue par défaut pour ce type d'événement.

Néanmoins, les dispositions constructives des éoliennes ayant fortement évoluées, le niveau de fiabilité est aujourd'hui bien meilleur. Des mesures de maîtrise des risques supplémentaires ont été mises en place notamment :

- Les dispositions de la norme IEC 61 400-1;
- Les dispositions des normes NF EN IEC 61 400-24 et EN 62 305-3 relatives à la foudre ;
- ★ Système de détection des survitesses et un système redondant de freinage ;
- ★ Système de détection des vents forts et un système redondant de freinage et de mise en sécurité des installations;
- ↓ Utilisation de matériaux résistants pour la fabrication des pales (fibre de verre ou de carbone, résines, etc.).

De manière générale, le respect des prescriptions de l'arrêté du 26 août 2011, modifié par les arrêtés du 22 juin 2020 et du 10 décembre 2021, relatif aux installations éoliennes soumises à autorisation permet de s'assurer que les éoliennes font l'objet de mesures réduisant significativement la probabilité de projection.

Il est considéré que la classe de probabilité de l'accident est « D » (rare) : « S'est produit mais a fait l'objet de mesures correctrices réduisant significativement la probabilité ».

Acceptabilité :

Avec une classe de probabilité de « D », le risque de projection de tout ou partie de pale pour chaque aérogénérateur est évalué comme acceptable dans le cas d'un nombre équivalent de personnes permanentes inférieur à 1000 dans la zone d'effet.

Le tableau suivant rappelle, pour chaque aérogénérateur du parc, la gravité associée et le niveau de risque (acceptable/inacceptable) :

Tableau 51 : Niveau de risque pour le scénario de projection de pale ou de fragment de pale

Projection de pale ou de fragment de pale (zone de 500 m autour de chaque éolienne)			
Eolienne	Gravité	Niveau de risque	
E01	Sérieux	Acceptable	
E02	Sérieux	Acceptable	
E03	Sérieux	Acceptable	
E04	Sérieux	Acceptable	

Ainsi, pour la Ferme éolienne de Blanzay 2 - Energie, le phénomène de projection de tout ou partie de pale des éoliennes constitue un risque acceptable pour les personnes.

8.2.5. Projection de glace

Zone d'effet :

L'accidentologie rapporte quelques cas de projection de glace. Ce phénomène est connu et possible, mais reste difficilement observable et n'a jamais occasionné de dommage sur les personnes ou les biens.

En ce qui concerne la distance maximale atteinte par ce type de projectiles, il n'existe pas d'information dans l'accidentologie. La référence [15] propose une distance d'effet fonction de la hauteur et du diamètre de l'éolienne, dans les cas où le nombre de jours de glace est important et où l'éolienne n'est pas équipée de système d'arrêt des éoliennes en cas de givre ou de glace :

Distance d'effet = 1,5 x (hauteur de moyeu + diamètre de rotor)

Cette distance de projection est jugée conservative dans des études postérieures [17]. A défaut de données fiables, il est proposé de considérer cette formule pour le calcul de la distance d'effet pour les projections de glace.

<u>Intensité :</u>

Pour le phénomène de projection de glace, le degré d'exposition correspond au ratio entre la surface d'un morceau de glace (cas majorant de 1 m²) et la superficie de la zone d'effet du phénomène.

Le tableau ci-dessous permet d'évaluer l'intensité du phénomène de projection de glace dans le cas du parc éolien. Zi est la zone d'impact, Zi est la zone d'effet, d est le degré d'exposition, D est le diamètre du rotor (D = 163 m), H est la hauteur au moyeu (H = 119m), et SG est la surface majorante d'un morceau de glace.

Tableau 52 : Niveau d'intensité pour le scénario de projection de morceaux de glace

Projection de morceaux de glace					
(dans un rayon de R _{PG} = 1,5 x (H + D) autour de l'éolienne, soit 423 m)					
Zone d'effet du phénomène Degré d'exposition du Intensité étudié en m² phénomène étudié en %					
Z _i = SG = 1 m ²	$Z_E = \pi \times [1.5 \times (H + D)]^2 = 562$ 122 m ²	$d = Z_1/Z_E \times 100 = 1.8 \times 10^{-4}\%$ (< 1 %)	Exposition modérée		

Gravité :

En fonction de cette intensité et des définitions issues de l'arrêté du 29 septembre 2005 (voir paragraphe 8.1.3), il est possible de définir les différentes classes de gravité pour le phénomène de projection de glace, dans la zone d'effet de ce phénomène :

- → Plus de 1000 personnes exposées : « Désastreux » ;
- ★ Entre 100 et 1000 personnes exposées : « Catastrophique » ;
- Entre 10 et 100 personnes exposées : « Important » ;
- → Moins de 10 personnes exposées : « Sérieux » ;
- → Présence humaine exposée inferieure à « une personne » : « Modéré ».

Il a été observé dans la littérature disponible [17] qu'en cas de projection, les morceaux de glace se cassent en petits fragments dès qu'ils se détachent de la pale. La possibilité de l'impact de glace sur des personnes abritées par un bâtiment ou un véhicule est donc négligeable et ces personnes ne doivent pas être comptabilisées pour le calcul de la gravité.

Dans un rayon de 423 m autour de chaque éolienne, la surface de 56,2 ha comprend des champs ainsi que des voiries non structurantes (chemins ruraux, voies communales). Cette zone fait donc partie dans son intégralité, de la catégorie des terrains aménagés mais peu fréquentés (voir paragraphe 3.4 « Cartographie de synthèse »). Pour chaque éolienne, 1 personne/10 ha est prise en compte.

Le tableau suivant indique, pour chaque aérogénérateur, le nombre de personnes exposées dans la zone d'effet du phénomène de projection de glace et la gravité associée :

Tableau 53 : Niveau de gravité pour le scénario de projection de morceaux de glace

Projection de morceaux de glace				
(dans un rayon de R _{PG} = 1,5 x (H + D) autour de l'éolienne, soit 423 m)				
Eolienne	Nombre de personnes permanentes (ou équivalent personnes permanentes)	Gravité		
E01	(56,2 x 1/10) = 5,62	Sérieux		
E02	(56,2 x 1/10) = 5,62	Sérieux		
E03	(56,2 x 1/10) = 5,62	Sérieux		
E04	(56,2 x 1/10) = 5,62	Sérieux		

Probabilité :

Au regard de la difficulté d'établir un retour d'expérience précis sur cet événement et considérant des éléments suivants :

- Les mesures de prévention de projection de glace imposées par l'arrêté du 26 août 2011, modifié par l'arrêté du 22 juin 2020 ;
- ★ Le recensement d'aucun accident lié à une projection de glace ;

Une probabilité « B – événement probable » est proposée pour cet événement.

Acceptabilité :

Avec une classe de probabilité « B – événement probable », le risque de projection de glace pour chaque aérogénérateur est évalué comme acceptable dans le cas d'un niveau de gravité « Sérieux ». Cela correspond pour cet événement à un nombre équivalent de personnes permanentes inférieur à 10 dans la zone d'effet.

Pour les aérogénérateurs munis de système permettant de détecter ou de déduire la formation de glace sur les pales de l'aérogénérateur, pour lesquels, en cas de formation importante de glace, la mise à l'arrêt de la machine est effectuée dans un délai maximal de soixante minutes et ayant une procédure de redémarrage en cas d'arrêt automatique lié à la présence de glace sur les pales, le risque sera jugé acceptable pour les niveaux de gravité « Modéré » et « Sérieux ».

Le tableau suivant rappelle, pour chaque aérogénérateur de la Ferme éolienne de Blanzay 2 - Energie, la gravité associée et le niveau de risque (acceptable/inacceptable) :

Tableau 54 : Niveau de risque pour le scénario de projection de morceaux de glace

Projection de morceaux de glace (dans un rayon de R _{PG} = 1,5 x (H + D) autour de l'éolienne, soit 423 m)						
Présence de système d'arrêt en cas Eolienne Gravité de détection ou déduction de glace Niveau et de procédure de redémarrage						
E01	Sérieux	Oui	Acceptable			
E02	Sérieux	Oui	Acceptable			
E03	Sérieux	Oui	Acceptable			
E04	Sérieux	Oui	Acceptable			

Ainsi, pour la Ferme éolienne de Blanzay 2 - Energie, le phénomène de projection de glace constitue un risque acceptable pour les personnes.

8.3. Synthèse de l'étude détaillée des risques

8.3.1. <u>Tableau de synthèse des scénarios étudiés</u>

Les tableaux suivants récapitulent, pour chaque événement redouté central retenu, les paramètres de risques : la cinétique, l'intensité, la gravité et la probabilité. Les tableaux regroupent toutes les éoliennes qui ont le même profil de risque.

Tableau 55 : Tableau de synthèse des risques et des paramètres associés pour toutes les éoliennes

Scénario	Zone d'effet	Cinétique	Intensité	Probabilité	Gravité
Effondrement de l'éolienne	Rayon ≤ hauteur totale de l'éolienne en bout de pale, soit 200 m autour de l'éolienne	Rapide	Exposition forte	D (rare)	Important
Chute de glace	Rayon ≤ D/2 = zone de survol = 81,5 m autour de l'éolienne	Rapide	Exposition modérée	A (courant)	Modérée
Chute d'éléments de l'éolienne	Rayon ≤ D/2 = zone de survol = 81,5 m autour de l'éolienne	Rapide	Exposition modérée	C (improbable)	Modérée

Projection de pale ou de fragment de pale	Rayon = 500 m autour de l'éolienne	Rapide	Exposition modérée	D (rare)	Sérieux
Projection de glace	Rayon = 1,5 x (H+D) autour de l'éolienne = 423 m autour de l'éolienne	Rapide	Exposition modérée	B (probable)	Sérieux

8.3.2. Synthèse de l'acceptabilité des risques

Enfin, la dernière étape de l'étude détaillée des risques consiste à rappeler l'acceptabilité des accidents potentiels pour chacun des phénomènes dangereux étudiés.

Pour conclure à l'acceptabilité, la matrice de criticité ci-dessous, adaptée de la circulaire du 29 septembre 2005 reprise dans la circulaire du 10 mai 2010 mentionnée ci-dessus sera utilisée.

La légende suivante permettra d'apprécier l'acceptabilité des risques pour chacun des événements accidentels redoutés.

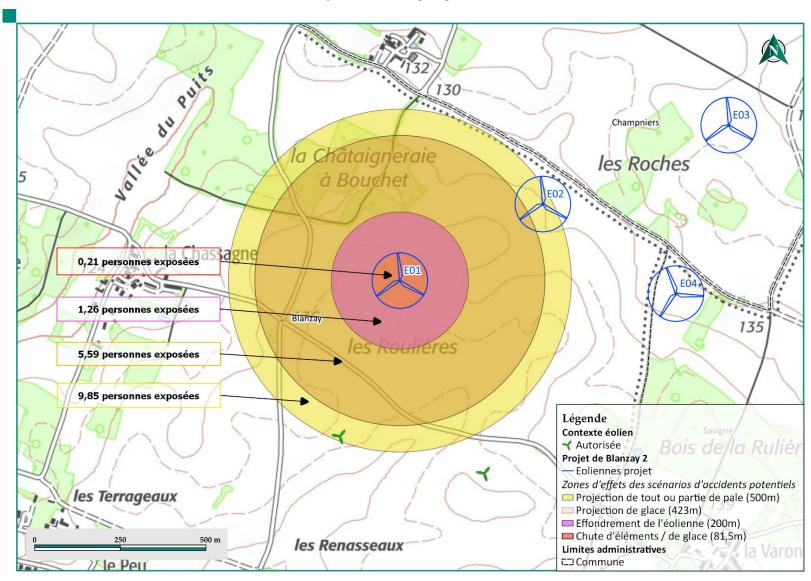
Niveau de risqueCouleurAcceptabilitéRisque très faibleAcceptableRisque faibleAcceptableRisque importantNon acceptable

Tableau 56 : Légende de la matrice de criticité

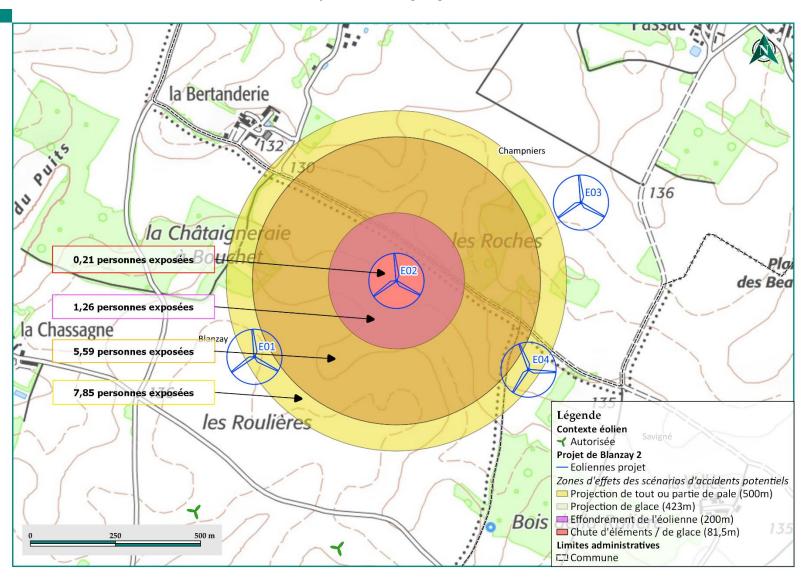
Conséquence		Classe de Probabilité				
	E	D	С	В	А	
Désastreux						
Catastrophique						
Important		Effondrement / Projection de pales ou fragments de pale				
Sérieux				Projection de glace		

Modéré		Chute d'éléments	Chute de Glace

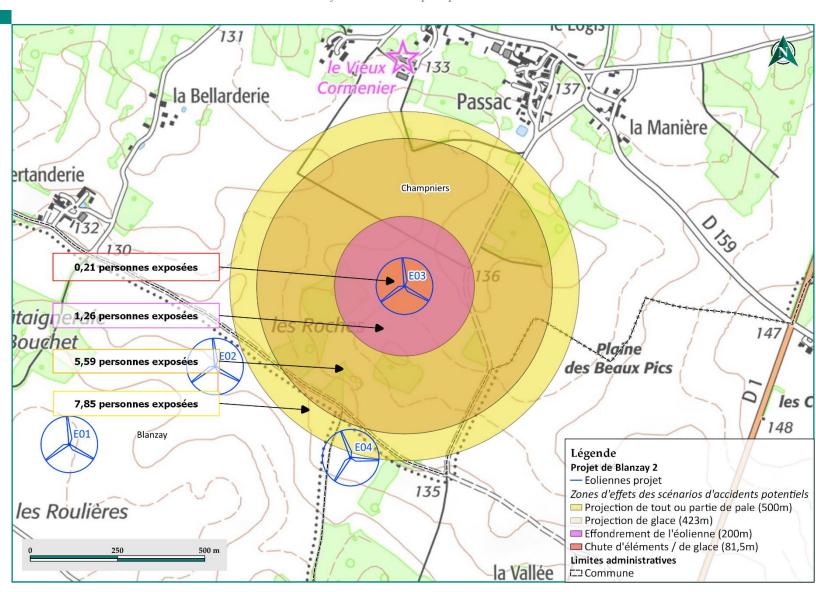
Au regard de la matrice complétée pour chacun des événements accidentels redoutés, il ressort que :

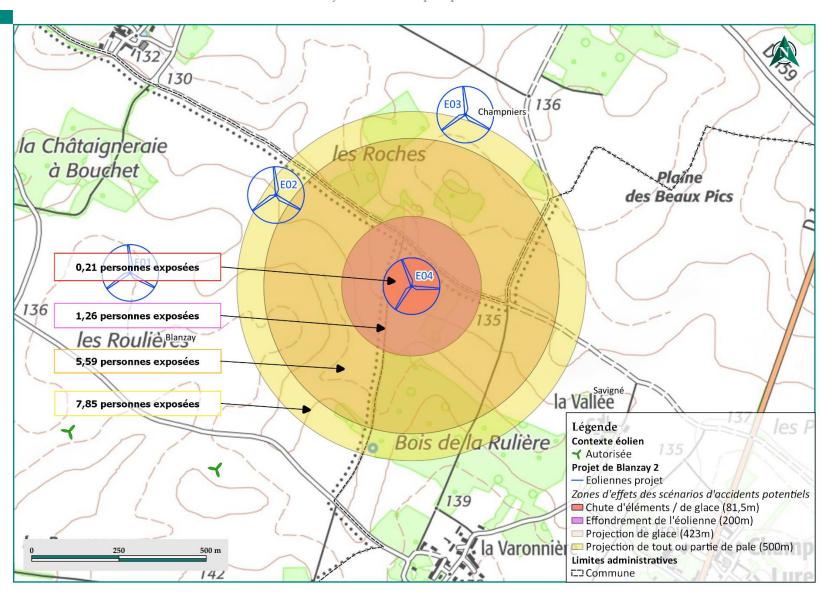

- Aucun accident n'apparaît dans les cases rouges de la matrice, ce qui signifie qu'il n'existe aucun « risque important » et « non acceptable » ;
- ★ Certains accidents figurent en case jaune. Pour ces accidents, il convient de souligner que les fonctions de sécurité détaillées dans la partie 7.6 seront mises en place.

Tous les phénomènes accidentels redoutés comportent donc un niveau de risque acceptable.


8.3.3. <u>Cartographie des risques</u>

Les cartes de synthèse ci-après sont proposées pour chaque aérogénérateur. Elles font apparaître, pour les scénarii détaillés dans le tableau de synthèse :


- Les enjeux étudiés dans l'étude détaillée des risques,
- L'intensité des différents phénomènes dangereux dans les zones d'effet de chaque phénomène dangereux,
- ★ Le nombre de personnes permanentes (ou équivalent personnes permanentes) exposées par zone d'effet.


Carte 25 : Synthèse des risques pour l'éolienne E01

Carte 26 : Synthèse des risques pour l'éolienne E02

Carte 27 : Synthèse des risques pour l'éolienne E03

Carte 28 : Synthèse des risques pour l'éolienne E04

9. Conclusion

Cette étude de dangers a pour objectif de répondre aux exigences du classement des éoliennes à la nomenclature ICPE. Ce document est réalisé par le pétitionnaire grâce au document générique produit par le groupe de travail SER-FEE-INERIS.

Tout d'abord, cette étude a décrit l'environnement du site ainsi que l'installation et son fonctionnement. Cela a permis de présenter le respect de l'ensemble de la réglementation s'appliquant aux éoliennes mais aussi la prise en compte des préconisations et des avis des organismes consultés (aviation miliaire, conseil général, etc.). L'ensemble des cibles humaines dans le périmètre d'étude a été identifié et quantifié.

Ensuite, l'étude a identifié les potentiels de dangers de l'installation qu'ils soient liés aux produits ou au fonctionnement de l'installation (chute d'éléments, projection d'éléments, effondrement, échauffement de pièces mécaniques, court-circuit électrique).

Puis, le retour d'expérience a permis d'identifier les principaux événements accidentels au niveau national et international que sont l'incendie, l'effondrement, la rupture de pale et la chute d'éléments.

L'analyse préliminaire des risques (APR) a permis d'identifier les scénarios d'accident majeurs et les mesures de sécurité qui empêchent ces scénarios de se produire ou en limitent les effets. L'APR a ainsi identifié l'ensemble des séquences accidentelles et phénomènes dangereux pouvant déclencher la libération du danger. Les scénarios ont été regroupés par thème : Glace, Incendie, Fuite, Chute d'élément, Projection et Effondrement. L'analyse du séquençage du déroulement des phénomènes accidentels permet de concevoir les mesures appropriées à apporter pour supprimer, réduire ou limiter le danger. L'APR, en répondant à l'ensemble des séquences accidentelles et phénomènes dangereux par des mesures appropriées, sélectionne les scénarios qui font l'objet de l'Etude Détaillée des Risques en excluant ceux dont l'intensité est faible.

Un ensemble de mesures de maîtrise des risques est mise en place pour prévenir ou limiter les conséquences des accidents majeurs dont voici les principales :

- → Prévenir la mise en mouvement de l'éolienne lors de la formation de glace,
- ♣ Prévenir l'atteinte des personnes par la chute de glace,
- → Prévenir l'échauffement significatif des pièces mécaniques,
- Prévenir la survitesse,
- ♣ Prévenir les courts-circuits.
- Prévenir les effets de la foudre,
- → Prévenir les défauts de stabilité de l'éolienne et les défauts d'assemblage,
- → Prévenir les risques de dégradation de l'éolienne en cas de vent fort.

L'Etude Détaillée des Risques a caractérisé les scénarios sélectionnés en termes de probabilité, cinétique, intensité et gravité. Les scénarios retenus sont : projection de tout ou une partie de pale, effondrement de l'éolienne, chute d'éléments de l'éolienne, chute de glace et projection de glace.

Pour chaque scénario d'accident, le calcul du niveau d'intensité (en fonction du ratio entre la zone d'impact et la zone d'effet du phénomène étudié) et l'estimation du niveau de gravité (en fonction du nombre de personnes exposées) associés à la probabilité d'occurrence (niveaux issus de la bibliographie), permet de définir si le risque est acceptable ou non.

Les niveaux de gravité selon les scénarios de danger sont communs à toutes les éoliennes. Le niveau de gravité le plus important, la gravité « sérieuse », concerne les risques d'effondrement d'éolienne, et de projection de pale ou de glace, bien que leurs probabilités d'occurrence diffèrent.

Le risque de projection de tout ou partie de pale présente une faible probabilité d'occurrence (probabilité D : rare), tout comme le risque d'effondrement de l'éolienne, alors que le risque de projection de glace a une probabilité d'occurrence probable (probabilité B : probable). A l'inverse, le risque de chute de glace détient un niveau de gravité des plus faibles (gravité modérée) mais sa probabilité d'occurrence est la plus forte (probabilité A : courant).

En conclusion, les éléments exposés par la présente étude de dangers montrent objectivement, que les risques résiduels associés au projet sont acceptables, confirmant ainsi la sureté du projet de Ferme éolienne de Blanzay 2 - Energie.

Original Instruction: T05 0128-1922 VER 00

10. Annexes

ANNEXE 1: « Declaration letter » des éoliennes V162 – 6,8 MW

RESTRICTED

Vestas Wind Systems A/S Hedeager 42 8200 Århus N Denmark Att: Shereef Kather

DNV Energy Systems Renewables Certification Tuborg Parkvej 8 2900 Hellerup Denmark Tel: +45 39 45 48 00 DK 89 83 23 14

Date: 2022-06-23 Our reference: LTR-08867-20220623 Your reference: 233187-SFA-20220613

Rev.0

Declaration letter: Vestas V162-6.8MW IECRE OD-501 Type certification

To whom it may concern,

This is to confirm that DNV have been engaged by Vestas to type certify the EnVentus V162-6.8MW, Wind Turbine with performance variants as 6.5MW and 7.2MW in accordance with IECRE OD-501 with the aim to complete the following certification modules as stated below:

The project is progressing as per the plan.

EnVentus V162-7.2MW - IECRE OD-501 / BEK 1773 Prototype certificate - Q2 2023

EnVentus V162-6.8MW - IECRE OD-501 Design Evaluation Conformity Statement - Q1 2024

EnVentus V162-6.8MW - IECRE OD-501 Provisional Type Certification - Q1 2024

EnVentus V162-6.8MW - IECRE OD-501 Type Certification - Q3 2024

Sincerely

for DNV Denmark A/S

Digitally signed by Wollenberg, Mark Date: 2022.06.23 13:54:36 +02'00' Mark Wollenber

Mark Wollenberg Project Manager

Mark.wollenberg@dnv.com

arasarampuram, Ramakrishna 2022.06.23 18:29:14 +02'00'

Ramakrishna Parasarampuram

Principal Engineer

Ramakrishna.parasarampuram@dnv.com

DNV Headquarters, Veritasveien 1, P.O.Box 300, 1322 Høvik, Norway. Tel: +47 67 57 99 00. www.dnv.com

LTR-08867-20220623 Rev0-DeclarationLetter.docx

CERTIFICAT CEPTUФИКАТ ◆ CERTIFICADO ◆ 舳

ANNEXE 2 : « Type Certificate » des éoliennes N163 – 5,X MW

Type Certificate

Subject:

Wind Turbine Nordex N163/5.X 50/60 Hz

Power Range 2580 kW - 5900 kW

Rotor Blade Type NR81.5-1 (optionally with Trailing Edge

Serrations and Anti-Icing System)

105 m, 108 m, 118 m, 120 m, 148 m, 159 m, 164 m Hub Height

IEC WT Class S

(with extended temperature range and

altitude of installation)

Registration no.:

014.36.2.01.22.01

Applicant:

Nordex Energy SE & Co. KG Langenhorner Chaussee 600

22419 Hamburg

Germany

Confirmation:

It is hereby certified that the above-mentioned subject has been assessed by TÜV SÜD Industrie Service GmbH concerning design, prototype testing and manufacturing.

The conformity evaluation was carried out according to:

IEC 61400-22:2010 'Wind turbines - Part 22:

Conformity testing and certification' in combination with IEC 61400-1:2005 including amendment 1:2010 'Wind turbines - Part 1: Design requirements'.

The evaluation is based on the following reference documents:

Registration no.	Date issued	Conformity Statements / Report
014.36.2.03.22.06	2022-09-21	DECS N163/5.X by TÜV SÜD
014.36.2.04.22.01	2022-09-21	TTCS N163/5.X by TÜV SÜD
014.23.2.05.22.10	2022-09-21	MECS N163/N149/N133 by TÜV SÜD
3114128-190-e Rev. 1	2022-09-21	FER N163/5.X by TÜV SÜD

This certificate is

valid until:

2027-09-20

if the validity of incorporated component certificates and the certification of the quality management system is maintained.

Certification Body for products according to DIN EN ISO/IEC 17065: 2013 accredited by DAMES. The accreditation is only valid for the scope mentioned in the accreditation certification.

page 1 / 1

Munich, 2022-09-21

TUV®

ANNEXE 3 : Attestation de conformité du projet aux règlements d'urbanisme

Attestation de conformité du projet éolien aux règlements d'urbanisme en vigueur sur les communes de Blanzay, Champniers et Savigné (86)

Conformément à l'article D. 181-15-2 du code de l'environnement, je soussignée, Elodie Mazeau, représentante dûment habilitée de la société Volkswind GmbH, Présidente de la société Ferme éolienne de Blanzay 2 - Energie, atteste que le projet Ferme éolienne de Blanzay 2 - Energie est en conformité avec les documents d'urbanisme en vigueur sur les communes de Blanzay, Champniers et Savigné (86).

Les communes de Blanzay, Champniers et Savigné sont couvertes par le PLUi (Plan Local d'Urbanisme intercommunal) du Civraisien en Poitou, approuvé par délibération du Conseil Communautaire le 25/02/2020.

Les éoliennes du projet de Blanzay 2 – Energie sont implantées en zone Agricole A où, d'après le règlement du PLUi, sont autorisés, « les équipements d'intérêt collectif et services publics », notamment « les Locaux techniques et industriels des administrations publiques et assimilées », « sous condition de ne pas porter atteinte aux activités agricoles ainsi qu'à la sauvegarde des milieux et paysages ». Les éoliennes étant considérées comme des installations d'intérêt collectif, leur implantation est donc autorisée sur le secteur d'implantation.

En zone A, la construction d'habitations nouvelles est interdite. Le projet se situe à plus de 500 m de l'ensemble des zones urbanisées ou constructibles.

Ainsi rien ne s'oppose à l'implantation d'éoliennes.

Fait le 15/12/2022

Pour la Ferme éolienne de Blanzay 2 - Energie 1 rue des Arquebusiers, 67 000 STRASBOURG Elodie Mazeau, Représentante dûment habilitée

ANNEXE 4 : Méthode de comptage des personnes pour la détermination de la gravité potentielle d'un accident à proximité d'une éolienne

La détermination du nombre de personnes permanentes (ou équivalent personnes permanentes) présentes dans chacune des zones d'effet se base sur la fiche n°1 de la circulaire du 10 mai 2010 relative aux règles méthodologiques applicables aux études de dangers. Cette fiche permet de compter aussi simplement que possible, selon des règles forfaitaires, le nombre de personnes exposées dans chacune des zones d'effet des phénomènes dangereux identifiés.

Dans le cadre de l'étude de dangers des parcs éoliens, cette méthode permet tout d'abord, au stade de la description de l'environnement de l'installation (partie 3), de comptabiliser les enjeux humains présents dans les ensembles homogènes (terrains non bâtis, voies de circulation, zones habitées, ERP, zones industrielles, commerces...) situés dans l'aire d'étude de l'éolienne considérée.

D'autre part, cette méthode permet ensuite de déterminer la gravité associée à chaque phénomène dangereux retenu dans l'étude détaillée des risques (partie 8).

Terrains non bâtis

Terrains non aménagés et très peu fréquentés (champs, prairies, forêts, friches, marais...) : compter 1 personne par tranche de 100 ha.

Terrains aménagés mais peu fréquentés (voies de circulation non structurantes, chemins agricoles, plateformes de stockage, vignes, jardins et zones horticoles, gares de triage...) : compter 1 personne par tranche de 10 hectares.

Terrains aménagés et potentiellement fréquentés ou très fréquentés (parkings, parcs et jardins publics, zones de baignades surveillées, terrains de sport (sans gradin néanmoins...)) : compter la capacité du terrain et a minima 10 personnes à l'hectare.

Voies de circulation

Les voies de circulation n'ont à être prises en considération que si elles sont empruntées par un nombre significatif de personnes. En effet, les voies de circulation non structurantes (< 2000 véhicules/jour) sont déjà comptées dans la catégorie des terrains aménagés mais peu fréquentés.

Voies de circulation automobiles

Dans le cas général, on comptera 0,4 personne permanente par kilomètre exposé par tranche de 100 véhicules/jour. Exemple : 20 000 véhicules/jour sur une zone de 500 m = $0.4 \times 0.5 \times 20 000/100 = 40$ personnes.

Nombre de personnes exposées sur voies de communication structurantes en fonction du linéaire et du trafic											
		Linéaire	de route	compris	dans la zo	ne d'effet	(en m)				
		100	200	300	400	500	600	700	800	900	1000
	2 000	0.8	1.6	2.4	3.2	4	4.8	5.6	6.4	7.2	8
	3 000	1.2	2.4	3.6	4.8	6	7.2	8.4	9.6	10.8	12
	4 000	1.6	3.2	4.8	6.4	8	9.6	11.2	12.8	14.4	16
	5 000	2	4	6	8	10	12	14	16	18	20
	7 500	3	6	9	12	15	18	21	24	27	30
(ur)	10 000	4	8	12	16	20	24	28	32	36	40
/jo	20 000	8	16	24	32	40	48	56	64	72	80
es'	30 000	12	24	36	48	60	72	84	96	<mark>108</mark>	120
	40 000	16	32	48	64	80	96	<mark>112</mark>	128	144	160
éhi	50 000	20	40	60	80	100	120	140	160	180	200
vé	60 000	24	48	72	96	<mark>120</mark>	144	168	192	216	240
en	70 000	28	56	84	112	140	168	196	224	252	280
0	80 000	32	64	96	128	160	192	224	256	288	320
•	90 000	36	72	<mark>108</mark>	144	180	216	252	288	324	360
	100 000	40	80	<mark>120</mark>	160	200	240	280	320	360	400

Voies ferroviaires

Train de voyageurs : compter 1 train équivalent à 100 véhicules (soit 0,4 personne exposée en permanence par kilomètre et par train), en comptant le nombre réel de trains circulant quotidiennement sur la voie.

Voies navigables

Compter 0,1 personne permanente par kilomètre exposé et par péniche/jour.

Chemins et voies piétonnes

Les chemins et voies piétonnes ne sont pas à prendre en compte, sauf pour les chemins de randonnée, car les personnes les fréquentant sont généralement déjà comptées comme habitants ou salariés exposés.

Pour les chemins de promenade, de randonnée : compter 2 personnes pour 1 km par tranche de 100 promeneurs/jour en moyenne.

Logements

Pour les logements : compter la moyenne INSEE par logement (par défaut : 2,5 personnes), sauf si les données locales indiquent un autre chiffre.

Etablissements recevant du public (ERP)

Compter les ERP (bâtiments d'enseignement, de service public, de soins, de loisir, religieux, grands centres commerciaux etc.) en fonction de leur capacité d'accueil (au sens des catégories du code de la construction et de l'habitation), le cas échéant sans compter leurs routes d'accès (cf. paragraphe sur les voies de circulation automobile).

Les commerces et ERP de catégorie 5 dont la capacité n'est pas définie peuvent être traités de la façon suivante :

- compter 10 personnes par magasin de détail de proximité (boulangerie et autre alimentation, presse et coiffeur)

– compter 15 personnes pour les tabacs, cafés, restaurants, supérettes et bureaux de poste.

Les chiffres précédents peuvent être remplacés par des chiffres issus du retour d'expérience local pour peu qu'ils restent représentatifs du maximum de personnes présentes et que la source du chiffre soit soigneusement justifiée.

Une distance d'éloignement de 500 m aux habitations est imposée par la loi. La présence d'habitations ou d'ERP se rencontre peu en pratique.

Zone d'activité

Zones d'activités (industries et autres activités ne recevant pas habituellement de public) : prendre le nombre de salariés (ou le nombre maximal de personnes présentes simultanément dans le cas de travail en équipes), le cas échéant sans compter leurs routes d'accès.

ANNEXE 5 : Tableau de l'accidentologie française

Le tableau ci-dessous a été établi par le groupe de travail constitué pour la réalisation guide de l'étude de dangers et actualisé. Il recense l'ensemble des accidents et incidents connus en France concernant la filière éolienne entre 1991 et début 2017.

Type d'accident	Date	Nom du parc	Départe ment	Puissance (en MW)	Année de mise en service	Technolog ie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information	Commentaire par rapport à l'utilisation dans l'étude de dangers
Effondrement	Novemb re 2000	Port la Nouvelle	Aude	0,5	1993	Non	Le mât d'une éolienne s'est plié lors d'une tempête suite à la perte d'une pale (coupure courant prolongée pendant 4 jours suite à la tempête)	Tempête avec foudre répétée	Rapport du CGM Site Vent de Colère	-
Rupture de pale	2001	Sallèles- Limousis	Aude	0,75	1998	Non	Bris de pales en bois (avec inserts)	?	Site Vent de Colère	Information peu précise
Effondrement	01/02/2	Wormhout	Nord	0,4	1997	Non	Bris d'hélice et mât plié	Tempête	Rapport du CGM Site Vent du Bocage	-
Maintenance	01/07/2 002	Port la Nouvelle – Sigean	Aude	0,66	2000	Oui	Grave électrisation avec brûlures d'un technicien	Lors de mesures pour cartériser la partie haute d'un transformateur 690V/20kV en tension. Le mètre utilisé par la victime, déroulé sur 1,46m, s'est soudainement plié et est entré dans la zone du transformateur, créant un arc électrique.	Rapport du CGM	Ne concerne pas directement l'étude de dangers (accident sur le personnel de maintenance)

Type d'accident	Date	Nom du parc	Départe ment	Puissance (en MW)	Année de mise en service	Technolog ie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information	Commentaire par rapport à l'utilisation dans l'étude de dangers
Effondrement	28/12/2 002	Névian - Grande Garrigue	Aude	0,85	2002	Oui	Effondrement d'une éolienne suite au dysfonctionnement du système de freinage	Tempête + dysfonctionnement du système de freinage	Rapport du CGM Site Vent de Colère Article de presse (Midi Libre)	-
Rupture de pale	25/02/2 002	Sallèles- Limousis	Aude	0,75	1998	Non	Bris de pale en bois (avec inserts) sur une éolienne bipale	Tempête	Article de presse (La Dépêche du 26/03/2003)	Information peu précise
Rupture de pale	05/11/2 003	Sallèles- Limousis	Aude	0,75	1998	Non	Bris de pales en bois (avec inserts) sur trois éoliennes. Morceaux de pales disséminés sur 100 m.	Dysfonctionnement du système de freinage	Rapport du CGM Article de presse (Midi Libre du 15/11/2003)	-
Effondrement	01/01/2 004	Le Portel – Boulogne sur Mer	Pas de Calais	0,75	2002	Non	Cassure d'une pale, chute du mât et destruction totale. Une pale tombe sur la plage et les deux autres dérivent sur 8 km.	Tempête	Base de données ARIA Rapport du CGM Site Vent de Colère Articles de presse (WindpowerMonthly May 2004, La Voix du Nord du 02/01/2004)	-
Effondrement	20/03/2 004	Loon Plage – Port de Dunkerque	Nord	0,3	1996	Non	Couchage du mât d'une des 9 éoliennes suite à l'arrachement de la fondation	Rupture de 3 des 4 micropieux de la fondation, erreur de calcul (facteur de 10)	Base de données ARIA Rapport du CGM Site Vent de Colère Articles de presse (La Voix du Nord du 20/03/2004 et du 21/03/2004)	-

Type d'accident	Date	Nom du parc	Départe ment	Puissance (en MW)	Année de mise en service	Technolog ie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information	Commentaire par rapport à l'utilisation dans l'étude de dangers
Rupture de pale	22/06/2 004	Pleyber-Christ - Site du Télégraphe	Finistère	0,3	2001	Non	Survitesse puis éjection de bouts de pales de 1,5 et 2,5 m à 50 m, mât intact	Tempête + problème d'allongement des pales et retrait de sécurité (débridage)	Rapport du CGM Articles de presse (Le Télégramme, Ouest France du 09/07/2004)	-
Rupture de pale	08/07/2 004	Pleyber-Christ - Site du Télégraphe	Finistère	0,3	2001	Non	Survitesse puis éjection de bouts de pales de 1,5 et 2,5m à 50m, mat intact	Tempête + problème d'allongement des pales et retrait de sécurité (débridage)	Rapport du CGM Articles de presse (Le Télégramme, Ouest France du 09/07/2004)	Incident identique à celui s'étant produit 15 jours auparavant
Rupture de pale	2004	Escales- Conilhac	Aude	0,75	2003	Non	Bris de trois pales		Site Vent de Colère	Information peu précise
Rupture de pale + incendie	22/12/2 004	Montjoyer- Rochefort	Drôme	0,75	2004	Non	Bris des trois pales et début d'incendie sur une éolienne (survitesse de plus de 60 tr/min)	Survitesse due à une maintenance en cours, problème de régulation, et dysfonctionnement du système de freinage	Base de données ARIA Article de presse (La Tribune du 30/12/2004) Site Vent de Colère	-
Rupture de pale	2005	Wormhout	Nord	0,4	1997	Non	Bris de pale		Site Vent de Colère	Information peu précise
Rupture de pale	08/10/2 006	Pleyber-Christ - Site du Télégraphe	Finistère	0,3	2004	Non	Chute d'une pale de 20 m pesant 3 tonnes	Allongement des pales et retrait de sécurité (débridage), pas de REX suite aux précédents accidents sur le même parc	Site FED Articles de presse (Ouest France) Journal FR3	-

Type d'accident	Date	Nom du parc	Départe ment	Puissance (en MW)	Année de mise en service	Technolog ie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information	Commentaire par rapport à l'utilisation dans l'étude de dangers
Incendie	18/11/2 006	Roquetaillade	Aude	0,66	2001	Oui	Acte de malveillance : explosion de bonbonne de gaz au pied de 2 éoliennes. L'une d'entre elles a mis le feu en pieds de mat qui s'est propagé jusqu'à la nacelle.	Malveillance / incendie criminel	Communiqués de presse exploitant Articles de presse (La Dépêche, Midi Libre)	-
Effondrement	03/12/2 006	Bondues	Nord	0,08	1993	Non	Sectionnement du mât puis effondrement d'une éolienne dans une zone industrielle	Tempête (vents mesurés à 137Kmh)	Article de presse (La Voix du Nord)	-
Rupture de pale	31/12/2 006	Ally	Haute- Loire	1,5	2005	Oui	Chute de pale lors d'un chantier de maintenance visant à remplacer les rotors	Accident faisant suite à une opération de maintenance	Site Vent de Colère	Ne concerne pas directement l'étude de dangers (accident pendant la phase chantier)
Rupture de pale	03/2007	Clitourps	Manche	0,66	2005	Oui	Rupture d'un morceau de pale de 4 m et éjection à environ 80 m de distance dans un champ	Cause pas éclaircie	Site FED Interne exploitant	-
Chute d'élément	11/10/2 007	Plouvien	Finistère	1,3	2007	Non	Chute d'un élément de la nacelle (trappe de visite de 50 cm de diamètre)	Défaut au niveau des charnières de la trappe de visite. Correctif appliqué et retrofit des boulons de charnières effectué sur toutes les machines en exploitation.	Article de presse (Le Télégramme)	-

Type d'accident	Date	Nom du parc	Départe ment	Puissance (en MW)	Année de mise en service	Technolog ie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information	Commentaire par rapport à l'utilisation dans l'étude de dangers
Emballement	03/2008	Dinéault	Finistère	0,3	2002	Non	Emballement de l'éolienne mais pas de bris de pale	Tempête + système de freinage hors service (boulon manquant)	Base de données ARIA	Non utilisable directement dans l'étude de dangers (événement unique et sans répercussion potentielle sur les personnes)
Collision avion	04/2008	Plouguin	Finistère	2	2004	Non	Léger choc entre l'aile d'un bimoteur Beechcraftch (liaison Ouessant-Brest) et une pale d'éolienne à l'arrêt. Perte d'une pièce de protection au bout d'aile. Mise à l'arrêt de la machine pour inspection.	Mauvaise météo, conditions de vol difficiles (sous le plafond des 1000m imposé par le survol de la zone) et faute de pilotage (altitude trop basse)	Articles de presse (Le Télégramme, Le Post)	Ne concerne pas directement l'étude de dangers (accident aéronautique)
Rupture de pale	19/07/2 008	Erize-la-Brûlée - Voie Sacrée	Meuse	2	2007	Oui	Chute de pale et projection de morceaux de pale suite à un coup de foudre	Foudre + défaut de pale	Communiqué de presse exploitant Article de presse (l'Est Républicain 22/07/2008)	-
Incendie	28/08/2 008	Vauvillers	Somme	2	2006	Oui	Incendie de la nacelle	Problème au niveau d'éléments électroniques	Dépêche AFP 28/08/2008	-
Rupture de pale	26/12/2 008	Raival - Voie Sacrée	Meuse	2	2007	Oui	Chute de pale		Communiqué de presse exploitant Article de presse (l'Est Républicain)	-

Type d'accident	Date	Nom du parc	Départe ment	Puissance (en MW)	Année de mise en service	Technolog ie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information	Commentaire par rapport à l'utilisation dans l'étude de dangers
Maintenance	26/01/2 009	Clastres	Aisne	2,75	2004	Oui	Accident électrique ayant entraîné la brûlure de deux agents de maintenance	Accident électrique (explosion d'un convertisseur)	Base de données ARIA	Ne concerne pas directement l'étude de dangers (accident sur le personnel de maintenance)
Rupture de pale	08/06/2 009	Bolléne	Vaucluse	2,3	2009	Oui	Bout de pale d'une éolienne ouvert	Coup de foudre sur la pale	Interne exploitant	Non utilisable dans les chutes ou les projections (la pale est restée accrochée)
Incendie	21/10/2 009	Froidfond - Espinassière	Vendée	2	2006	Oui	Incendie de la nacelle	Court-circuit dans transformateur sec embarqué en nacelle ?	Article de presse (Ouest- France) Communiqué de presse exploitant Site FED	-
Incendie	30/10/2 009	Freyssenet	Ardèche	2	2005	Oui	Incendie de la nacelle	Court-circuit faisant suite à une opération de maintenance (problème sur une armoire électrique)	Base de données ARIA Site FED Article de presse (Le Dauphiné)	-

Type d'accident	Date	Nom du parc	Départe ment	Puissance (en MW)	Année de mise en service	Technolog ie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information	Commentaire par rapport à l'utilisation dans l'étude de dangers
Maintenance	20/04/2	Toufflers	Nord	0,15	1993	Non	Décès d'un technicien au cours d'une opération de maintenance	Crise cardiaque	Article de presse (La Voix du Nord 20/04/2010)	Ne concerne pas directement l'étude de dangers (accident sur le personnel de maintenance)
Effondrement	30/05/2 010	Port la Nouvelle	Aude	0,2	1991	Non	Effondrement d'une éolienne	Le rotor avait été endommagé par l'effet d'une survitesse. La dernière pale (entière) a pris le vent créant un balourd. Le sommet de la tour a plié et est venu buter contre la base entrainant la chute de l'ensemble.	Interne exploitant	-
Incendie	19/09/2 010	Montjoyer- Rochefort	Drôme	0,75	2004	Non	Emballement de deux éoliennes et incendie des nacelles.	Maintenance en cours, problème de régulation, freinage impossible, évacuation du personnel, survitesse de +/- 60 tr/min	Articles de presse Communiqué de presse SER-FEE	-
Maintenance	15/12/2 010	Pouillé-les- Côteaux	Loire Atlantiq ue	2,3	2010	Oui	Chute de 3 m d'un technicien de maintenance à l'intérieur de l'éolienne. L'homme de 22 ans a été secouru par le GRIMP de Nantes. Aucune fracture ni blessure grave.		Interne SER-FEE	Ne concerne pas directement l'étude de dangers (accident sur le personnel de maintenance)

Type d'accident	Date	Nom du parc	Départe ment	Puissance (en MW)	Année de mise en service	Technolog ie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information	Commentaire par rapport à l'utilisation dans l'étude de dangers
Transport	31/05/2 011	Mesvres	Saône- et-Loire	-	-	-	Collision entre un train régional et un convoi exceptionnel transportant une pale d'éolienne, au niveau d'un passage à niveau Aucun blessé		Article de presse (Le Bien Public 01/06/2011)	Ne concerne pas directement l'étude de dangers (accident de transport hors site éolien)
Rupture de pale	14/12/2 011	Non communiqué	Non commun iqué	2,5	2003	Oui	Pale endommagée par la foudre. Fragments retrouvés par l'exploitant agricole à une distance n'excédant pas 300 m.	Foudre	Interne exploitant	Information peu précise sur la distance d'effet
Incendie	03/01/2 012	Non communiqué	Non commun iqué	2,3	2006	Oui	Départ de feu en pied de tour. Acte de vandalisme : la porte de l'éolienne a été découpée pour y introduire des pneus et de l'huile que l'on a essayé d'incendier. Le feu ne s'est pas propagé, dégâts très limités et restreints au pied de la tour.	Malveillance / incendie criminel	Interne exploitant	Non utilisable directement dans l'étude de dangers (pas de propagation de l'incendie)
Rupture de pale	05/01/2 012	Widehem	Pas-de- Calais	0,75	2000	Non	Bris de pales, dont des fragments ont été projetés jusqu'à 380 m. Aucun blessé et aucun dégât matériel (en dehors de l'éolienne).	Tempête + panne d'électricité	Article de presse (La Voix du Nord 06/01/2012) Vidéo DailyMotion Interne exploitant	-

Type d'accident	Date	Nom du parc	Départe ment	Puissance (en MW)	Année de mise en service	Technolog ie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information	Commentaire par rapport à l'utilisation dans l'étude de dangers
Maintenance	06/02/2 012	Lehaucourt- Gricourt	Aisne	2	2008	oui	Accident électrique ayant entraîné la brûlure de deux agents de maintenance	Accident électrique (explosion d'un convertisseur)	Base de données ARIA	Ne concerne pas directement l'étude de dangers (accident sur le personnel de maintenance)
Rupture de pale	11/04/2 012	Corbières- Maritimes	Aude	0.66	2000	non	Projection de morceaux de pale suite à un coup de foudre	Foudre + défaut de pale	Base de données ARIA	-
Rupture de pale	18/05/2 012	Chemin d'Ablis	Eure et Loir	2	2008	Oui	Chute de pale	Rupture du roulement, présence de traces de corrosion.	Base de données ARIA	-
Effondrement	30/05/2 012	Corbières- Maritime	Aude	0,2	1991	Non	Chute d'une éolienne	Tempête (vents mesurés à 130 km/h)	Base de données ARIA	-
Chute d'élément	01/11/2 012	Rézentières- Vieillespresse	Cantal	2,5	2011	Oui	Chute d'un élément de 400 g constitutif d'une pale d'éolienne	Non précise	Base de données ARIA	-

Type d'accident	Date	Nom du parc	Départe ment	Puissance (en MW)	Année de mise en service	Technolog ie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information	Commentaire par rapport à l'utilisation dans l'étude de dangers
Incendie + Rupture de pale	05/11/2 012	Corbières- Maritimes	Aude	0.66	2000	Non	Incendie sur une éolienne + projections incandescentes + chute d'une pale le lendemain	Dysfonctionnement de disjoncteur situé sur l'éolienne a entraîné la propagation de courants de court-circuit faisant fondre les câbles et entraînant un départ d'incendie dans la nacelle.	Base de données ARIA	-
Rupture de pale	06/03/2 013	Escales- Conihac	Aude	0.75	2003	Non	Défaut de vibration détecté sur une éolienne qui s'est mise automatiquement à l'arrêt. Le lendemain une des 3 pales s'est décrochée avant de percuter le mât. La veille du défaut de vibration, la machine s'était arrêtée après la détection d'un échauffement du frein et d'une vitesse de rotation excessive de la génératrice. Un technicien l'avait remise en service le matin même de l'accident sans avoir constaté de défaut	L'une des pales avait déjà connu un problème de fixation en novembre 2011. Les fixations de cette pale au moyeu avaient été remplacées et le serrage des vis des 2 autres avait été contrôlé en avril 2012.	Base de données ARIA	-

Type d'accident	Date	Nom du parc	Départe ment	Puissance (en MW)	Année de mise en service	Technolog ie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information	Commentaire par rapport à l'utilisation dans l'étude de dangers
Incendie + Rupture de pale	17/03/2 013	Fère- Champenoise- Envuy-Corroy	Marne	2.5	2011	Oui	Incendie dans la nacelle d'une éolienne Une des pales tombe au sol, une autre menace de tomber.	Au moment du départ de feu, le vent soufflait à 11 m/s. La puissance de l'éolienne était proche de sa puissance nominale. La gendarmerie évoque une défaillance électrique après avoir écarté la malveillance.	Base de données ARIA	-
Foudre	20/06/2 013	Non communiqué Commune : Labastide-sur- besorgues	Ardèche	0.9	2009	Oui	Impact de foudre a endommagé une éolienne : pâle déchirée sur 6 m de longueur, le boîtier basse tension et le parafoudre en tête d'installation au poste de livraison sont détruits.	Foudre : incursion d'un arc électrique dans la pâle conduisant à une montée en pression de l'air intérieur	Base de données ARIA	-
Maintenance	01/07/2 013	Haut- Languedoc	Hérault	1.3	2003	Oui	Incident sur un accumulateur dans une éolienne. L'opérateur est blessé par la projection d'une partie amovible de l'équipement sur lequel il intervient.	Les causes de cet accident semblent donc directement liées des défaillances organisationnelles : la conscience des risques associés aux interventions sur des équipements sous pression, la formation de l'intervenant à sa tâche pression et les procédures opérationnelles n'étaient pas suffisamment robustes.	Base de données ARIA	Ne concerne pas directement l'étude de dangers (accident sur le personnel de maintenance)

Type d'accident	Date	Nom du parc	Départe ment	Puissance (en MW)	Année de mise en service	Technolog ie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information	Commentaire par rapport à l'utilisation dans l'étude de dangers
Maintenance	03/08/2 013	Moréac	Morbiha n	2MW	2010	Nono	Déversement d'huile hydraulique dans un parc éolien	Erreur de maintenance	Base de données ARIA	-
Incendie	09/01/2 014	Vent du Thiérarche 02	Ardenne s	2,5	2013	Oui	Un feu se déclare au niveau de la partie moteur d'une éolienne	Défaillance électrique	Base de données ARIA	-
Rupture de pale	20/01/2	Corbillères- Maritimes	Aude	0.66	2000	Non	Une des éoliennes du parc s'arrête automatiquement. Le lendemain matin, les techniciens de maintenance retrouvent une pale de 20m au pied du mât	Lors de l'accident le vent soufflait entre 18 m/s et 22 m/s. Des fissures sont détectées sur la pièce en aluminium appelée "alu ring", située à la base de la pale.	Base de données ARIA	-
Rupture de pale	14/11/2 014	Sources de la Loire	Ardèche	2.05	2011	Oui	La pale d'une éolienne chute lors d'un orage. Certains débris sont projetés à 150 m.	Des rafales de vent atteignent les 130 km/h.	Base de données ARIA	-
Rupture de pale	05/12/2 014	Non communiqué Commune : FITOU	Aude	1.3	2002	Non	Une des 2 parties de l'aérofrein de la pale est retrouvée au sol. Cette partie, en fibre de verre, mesure 3 m de long.	-	Base de données ARIA	-

Type d'accident	Date	Nom du parc	Départe ment	Puissance (en MW)	Année de mise en service	Technolog ie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information	Commentaire par rapport à l'utilisation dans l'étude de dangers
Incendie	29/01/2 015	Parc éolien de Remigny et Ly- Fontaine	Aisne	2.3	2015	Oui	Un feu se déclare dans une éolienne.	Un défaut d'isolation au niveau des connexions des conducteurs de puissance serait à l'origine du sinistre. Le câble mis en cause assure la jonction entre la base et le haut de la tour. Ce défaut aurait provoqué un arc électrique entre 2 phases ce qui aurait initié l'incendie.	Base de données ARIA	-
Incendie	06/02/2 015	Parc éolien de la Tourette	Deux- Sèvres	2	2011	Oui	Un feu se déclare dans une éolienne, au niveau d'une armoire électrique où interviennent 2 techniciens.	-	Base de données ARIA	-
Incendie	24/08/2 015	Parc éolien de Janville	Eur-et- Loir	2.5	2005	Non	Un feu se déclare vers sur le moteur d'une éolienne situé à 90 m de hauteur.	-	Base de données ARIA	-

Type d'accident	Date	Nom du parc	Départe ment	Puissance (en MW)	Année de mise en service	Technolog ie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information	Commentaire par rapport à l'utilisation dans l'étude de dangers
Rupture de pales et du rotor	10/11/2 015	Parc éolien de Menil-la- Horgne	Meuse	1.5	2007	Non	Les 3 pales et le rotor d'une éolienne, dont la nacelle se situe à 85 m de haut, chutent au sol. Le transformateur électrique, à son pied, est endommagé. De l'huile s'en écoule mais reste confinée dans la rétention. Les débris, disséminés sur 4 000 m², sont ramassés.	Les premières constations indiqueraient une défaillance de l'arbre lent, qui assure la jonction entre le rotor et la multiplicatrice. Elle trouverait son origine dans un défaut de fabrication de la pièce.	- Base de données ARIA - Article de presse (L'Est Républicain 13/11/2015)	-
Rupture de l'aérofrein d'une pale d'éolienne	07/02/2 016	Parc éolien Conilhac- corbieres	Aude	2.3	2014	Oui	L'aérofrein d'une des 3 pales d'une éolienne se rompt et chute au sol.	Les premières investigations indiqueraient qu'un point d'attache du système mécanique de commande de l'aérofrein (système à câble) se serait rompu, ce qui aurait actionné l'ouverture de l'aérofrein.	Base de données ARIA	-
Rupture de pale	08/02/2 016	Parc éolien Menez-Braz	Finistère	0,3	1999	Non	Une pale chute au sol, une autre se déchire. La pale rompue est retrouvée à 40 m du pied du mat.	Tempête : vents à 160 km/h	Base de données ARIA	-

Type d'accident	Date	Nom du parc	Départe ment	Puissance (en MW)	Année de mise en service	Technolog ie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information	Commentaire par rapport à l'utilisation dans l'étude de dangers
Rupture de pale	07/03/2 016	Parc éolien de la lande du vieux Pavé	Côtes d'Armor	0.85	2009	Oui	Une des pales d'une éolienne se rompt et chute à 5 m du pied du mât. Le mât est endommagé dans sa partie haute, causé par un choc avec la pale, sans présenter de risque de chute.	L'inspection des éléments mécaniques au sol et du rotor permet d'envisager une défaillance du système d'orientation de la pale. Celle- ci aurait entraîné la rupture de la couronne extérieure du roulement à bille puis la libération de la couronne intérieure solidaire de la pale.	Base de données ARIA	-
Fuite d'huile	28/05/2 016	Parc éolien de Janville	Eur-et- Loir	2.5	2005	Non	Un écoulement d'huile sous la nacelle d'une éolienne.	La défaillance d'un raccord sur le circuit de refroidissement de l'huile de la boîte de vitesse de l'éolienne est à l'origine de la fuite.	Base de données ARIA	-
Incendie	10/08/2 016	Parc éolien de Hescamps	Somme	1	2008	Non	Un feu se déclare dans la partie haute d'une éolienne, au niveau du rotor	Une défaillance électrique serait à l'origine du départ de feu.	Base de données ARIA	-
Incendie	18/08/2 016	Parc éolien de Dargies	Oise	2	2014	Oui	Incendie, la fumée s'échappe de la tête de l'éolienne, à 80 m de haut.	Une défaillance électrique serait à l'origine de l'incendie. L'armoire électrique ou le pupitre de commande en serait le point de départ.	Base de données ARIA	-

Type d'accident	Date	Nom du parc	Départe ment	Puissance (en MW)	Année de mise en service	Technolog ie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information	Commentaire par rapport à l'utilisation dans l'étude de dangers
Maintenance	14/09/2 016	Parc éolien de la Plaine Auboise	Aube	2.3	2009	Oui	Un employé est électrisé alors qu'il intervient dans le nez d'une éolienne	-	Base de données ARIA	Ne concerne pas directement l'étude de dangers (accident sur le personnel de maintenance)
Fissure	11/01/2 017	Parc éolien du Canton du Quesnoy	Nord	2.05	2010	Oui	Une fissure est constatée sur une pale d'une éolienne	Selon l'exploitant, le défaut ne présente pas de caractère générique.	Base de données ARIA	-
Rupture de pale	12/01/2 017	Parc éolien de Tuchan I	Aude	0.6	2002	Non	Les 3 pales d'une éolienne chutent au sol.	L'éolienne, de 600 kW mise en service en 2002, était à l'arrêt pour maintenance suite à la casse totale de son arbre lent quelques jours auparavant. Bien que mise en position de sécurité les vents à 25 m/s ont provoqué la rupture des pales à cause d'une vitesse de rotation excessive.	Base de données ARIA	-
Rupture de pale	18/01/2 017	Parc éolien du Nurlu	Somme	2	2010	Non	Une pale d'éolienne est tombée au sol et s'est brisée en plusieurs morceaux.	Selon la presse, la tempête survenue quelques jours auparavant pourrait être à l'origine de la chute.	Base de données ARIA	-

Type d'accident	Date	Nom du parc	Départe ment	Puissance (en MW)	Année de mise en service	Technolog ie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information	Commentaire par rapport à l'utilisation dans l'étude de dangers
Bris de pale	27/02/2 017	Parc éolien du Grand Linault	Deux- Sèvres	2	2011	Oui	Les 7 derniers mètres d'une pale de 44 m, se sont désolidarisés. Plusieurs fragments de la pale sont projetés jusqu'à 150 m du mât, haut lui-même de 78 m.	L'expertise du fabriquant conclut à un défaut de fabrication. Par erreur, les couches de tissu du bord d'attaque ont été coupées, manuellement, niveau de la ligne de jonction des 2 coques lors des opérations de ponçage des excès de colle après démoulage de la pale. Dans cette zone, les coques n'étaient maintenues entre elles que par le mastic et la peinture de finition.	Base de données ARIA	-
Rupture de pale	27/02/2 017	Parc éolien de Belrain	Meuse	2	2011	Non	Lors d'un orage, la pointe d'une pale d'éolienne se rompt. L'extrémité, de 7 à 10 m, est retrouvée au sol, en 3 morceaux, à 200 m de l'éolienne.	Une rafale de vent extrême ayant été mesurée dans les secondes précédant la rupture, cette origine est privilégiée pour expliquer la casse de la pale.	Base de données ARIA	-

Type d'accident	Date	Nom du parc	Départe ment	Puissance (en MW)	Année de mise en service	Technolog ie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information	Commentaire par rapport à l'utilisation dans l'étude de dangers
Incendie	06/06/2 017	Parc éolien du Moulin d'Emanville	Eure-et- Loir	3	2014	Oui	Un feu se déclare dans la nacelle d'une éolienne. L'incendie s'éteint seul, à la fin de la combustion de la nacelle, vers 19h30. La nacelle et le rotor sont totalement calcinés. Une partie des pales ainsi que le haut du mât ont été touchés par l'incendie. Des éléments sont tombés au sol.	En première hypothèse, l'exploitant indique qu'un défaut des condensateurs du boitier électrique, situé dans la nacelle, pourrait être à l'origine du sinistre.	Base de données ARIA	
Rupture de pale + foudre	08/06/2 017	Parc éolien d'Aussac- Vadalle	Charent e	2	2010	Non	Une partie d'une pale d'une éolienne chute au sol.	L'expertise réalisée par le fabriquant de la pale conclut qu'un impact de foudre est à l'origine de sa rupture. Survenu à environ 35 cm de l'extrémité, il a entraîné la rupture du bord de fuit puis une déchirure du fragment. Le dispositif de protection contre la foudre ne montre pas de défaut.	Base de données ARIA	
Rupture de pale	24/06/2 017	Parc éolien des Tambours	Pas de Calais	1.67	2007	Non	Une pale d'une éolienne se brise au niveau de sa jonction avec le rotor.	-	Base de données ARIA	

Type d'accident	Date	Nom du parc	Départe ment	Puissance (en MW)	Année de mise en service	Technolog ie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information	Commentaire par rapport à l'utilisation dans l'étude de dangers
Rupture de l'aérofrein d'une pale d'éolienne	17/07/2 017	Parc éolien de Fecamp	Seine- Maritim e	0.5	2006	Non	L'aérofrein d'une des 3 pales d'une éolienne se rompt et chute au sol.	L'exploitant conclut que le desserrage d'une vis anti- rotation a provoqué la chute de l'aérofrein. Un problème de montage, ou des vibrations en fonctionnement, en serait à l'origine.	Base de données ARIA	-
Fuite d'huile	24/07/2 017	Parc éolien de Mauron	Morbiha n	2	2008	Non	Une fuite d'huile dont le rejet est estimé à 5L le long du mât. Seules quelques gouttes sont tombées au sol.	Rupture d'un flexible du circuit hydraulique	Base de données ARIA	
Rupture de pale	05/08/2 017	Parc éolien de l'Osière	Aisne	2	2017	Oui	Une pale d'éolienne se brise en son centre et chute	-	Base de données ARIA	
Chute du carénage	08/11/2 017	Parc éolien de Roman- Blandey	Eure	2	2010	Oui	Chute du carénage de la nacelle qui tombe au sol	L'exploitant conclut que la chute du carénage est due à un défaut d'assemblage de ses boulonnages	Base de données ARIA	

Type d'accident	Date	Nom du parc	Départe ment	Puissance (en MW)	Année de mise en service	Technolog ie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information	Commentaire par rapport à l'utilisation dans l'étude de dangers
Rupture de mât	01/01/2 018	Parc éolien de Bouin	Vendée	2.4	2003	Non	Le mât d'une éolienne de 60 m de haut se brise en 2 lors d'une tempête. Les 55 m supérieurs de l'éolienne chutent au sol. Des débris s'éparpillent sur une surface assez importante. Le rotor est enfoncé dans le sol.	Les dispositifs de protection contre la survitesse s'activent, mais la machine ne s'arrête pas à cause d'une usure anormale des blocs de frein du système d'orientation des pales. Les charges mécaniques exercées sur le mât excèdent alors largement les limites de conception de l'éolienne, qui s'effondre.	Base de données ARIA	
Rupture de pale	04/01/2 018	Parc éolien de Rampont	Meuse	2	2008	Non	L'extrémité d'une pale d'une éolienne de 2 MW se rompt lors d'un épisode venteux	-	Base de données ARIA	
Chute de l'aérofrein	06/02/2 018	Parc éolien de Conilhac	Aude	2.3	2014	Oui	L'aérofrein d'une pale d'éolienne chute au sol dans un parc éolien.	Lors de l'ouverture de l'aérofrein en bout de pale, son axe de fixation en carbone s'est rompu provoquant sa chute.	Base de données ARIA	
Incendie	01/06/2 018	Parc éolien de Marsanne	Drôme	2	2008	Oui	Un feu se déclare au pied d'une éolienne dans un parc composé de 8 aérogénérateurs. L'incendie se propage jusqu'à sa nacelle.	La gendarmerie conclut que l'origine de l'événement est criminelle	Base de données ARIA	

Type d'accident	Date	Nom du parc	Départe ment	Puissance (en MW)	Année de mise en service	Technolog ie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information	Commentaire par rapport à l'utilisation dans l'étude de dangers
Incendie	05/06/2 018	Parc éolien de la vallée de l'Hérault	Hérault	2	2014	Oui	Un feu se déclare vers 18h45 dans la nacelle d'une éolienne de 70 m de haut. Des éléments de l'éolienne en feu chutent au sol. Les flammes se propagent en partie basse de l'aérogénérateur.	Selon la presse, un dysfonctionnement électrique serait à l'origine de l'incendie.	Base de données ARIA	
Rupture de pales	04/07/2 018	Parc éolien de Corbières- Maritimes	Aude	0.5	1993	Non	Dislocation des extrémités de 2 pales	-	Base de données ARIA	
Incendie	28/09/2 018	Parc éolien des Trois Evêques	Tarn	2	2009	Oui	Un feu se déclare au niveau de la nacelle d'une éolienne dans un parc éolien. Des éléments enflammés chutent au sol. Le feu se propage à la végétation voisine.	La présence de 2 foyers et de traces d'effraction sur la porte d'accès amène la gendarmerie à conclure à un acte de malveillance.	Base de données ARIA	
Fuite d'huile	17/10/2 018	Parc éolien du Quint	Somme	2	2017	Oui	Fuite d'huile hydraulique depuis la nacelle d'une éolienne. L'aérogénérateur est arrêté. Environ 150 l d'huiles sont récupérés. L'exploitant du parc éolien estime que 50 l ont été perdus.	La mauvaise réalisation d'une activité de maintenance annuelle préventive. Le technicien n'a pas suffisamment serré le filtre hydraulique qu'il venait de mettre en place.	Base de données ARIA	

Type d'accident	Date	Nom du parc	Départe ment	Puissance (en MW)	Année de mise en service	Technolog ie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information	Commentaire par rapport à l'utilisation dans l'étude de dangers
Rupture de mât	06/11/2 018	Parc éolien de Quinze Mines	Loiret	3	2010	Oui	Une éolienne s'effondre. Le mât s'est arraché de sa base en béton. Les filetages des boulons de fixation du mât sont arasés et les écrous sont arrachés.	Une sur-vitesse de rotation des pâles a conduit à une surcharge de contraintes sur la structure, provoquant son effondrement.	Base de données ARIA	
Rupture de pâles	18/11/2 018	Parc éolien de Conilhac	Aude	2,3	2014	Oui	3 Aérofreins en extrémité des pâles chutent au sol.	-	Base de données ARIA	
Rupture de pâles	19/11/2 018	Les Tournevents du COS	Aisne	2,4	2017	Oui	Un bout de pâle est tombé en plein champ.	-	Base de données ARIAArticle du journal «Journal de Ham » du 19/11/2018	
Incendie	023/01/ 2019	Grands Gâts ou La Limouzinière	Loire- Atlantiq ue	2,05	2010-2011	Oui	Un feu se déclare au niveau de la nacelle puis au pied d'une éolienne dans un parc éolien. Des débris de plastiques sont tombés au sol.	-Avarie sur la génératrice de l'éolienne.	Base de données ARIAArticle du journal « France 3 région Pays de la Loire » du 03/01/2019	
Rupture de pâles	17/01/2 019	Parc éolien du Bambesch	Moselle	2	2007	Non	Bris et projection de plusieurs morceaux de pâle.	-Défaut d'adhérence entre la coque en fibre de verre et le cœur de la pale.	Base de données ARIAArticle du journal « Le Républicain Lorrain » du 30/01/2019	

Type d'accident	Date	Nom du parc	Départe ment	Puissance (en MW)	Année de mise en service	Technolog ie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information	Commentaire par rapport à l'utilisation dans l'étude de dangers
Incendie	20/01/2 019	Parc éolien de Roussas	Drôme	1,75	2006	Oui	2 éoliennes sont incendiées	Acte criminel	Base de données ARIA	
Rupture de mât	23/01/2 019	Parc éolien de Boutavent	Oise	1	2011	Oui	Les pales étaient en survitesse. Le mât d'une éolienne s'est plié en deux en son milieu. Des débris sont projetés dans un rayon de 300 m.	Les pales étaient en survitesse. Le balourd en résultant aurait conduit au pliage du mât. Un problème sur le générateur censé faire ralentir les pâles.Problème de chute de tension au niveau des batteries pilotant la rotation des pales en cas de coupure de l'alimentation électrique.	Base de données ARIAArticle du journal « Courrier Picard » du 23/01/2019	
Rupture de pâles	30/01/2 019	Parc éolien de Roquetaillade	Aude	0,66	2001	Non	Chute d'une pâle au sol.	-	Base de données ARIAArticle du journal « L'Indépendant » du 18/02/2019	
Rupture de pâles	02/04/2 019	Parc Eole de la Haute Somme	Somme	2	2017	Oui	La foudre a touché une pâle d'éolienne. Un morceau de pâle est tombé au sol.	Un épisode orageux au-dessus de la région de Péronne est à l'origine de la rupture d'un morceau de pâle.	Article du journal « Courrier Picard » du 03/04/2019	

Type d'accident	Date	Nom du parc	Départe ment	Puissance (en MW)	Année de mise en service	Technolog ie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information	Commentaire par rapport à l'utilisation dans l'étude de dangers
Incendie	18/06/2 019	Parc éolien de Quesnoy-sur- Airaines	Somme	2,3	2011	Oui	Un feu se déclare sur une éolienne.	Un court-circuit sur un condensateur serait à l'origine de l'incendie.	Base de données ARIA	
Incendie	25/06/2 019	Parc de Kéruel (Ambon)	Morbiha n	1,67	2008	Non	Un feu se déclare à l'arrière de la nacelle. Une partie de la nacelle est tombée au sol.	Des fuites d'huiles n'auraient pas été nettoyées et auraient provoquées l'incendie.	Base de données ARIA	
Projection de morceaux de pales	27/06/2 019	Parc éolien La Picoterie	Aisne	2	2009	Non	Un bout de pale abîmé est projeté en 2 morceaux, l'un à 15 m et l'autre à 100 m de l'éolienne.	-	Base de données ARIA	
Endommagem ent de pale + foudre	03/07/2 019	Parc éolien Corbières- Maritimes	Aude	0,66	2000	Non	Impact sur le milieu de la pale et une ouverture du bout de pale sur 2m suite à un coup de foudre.	Foudre	Base de données ARIA	
Chute de l'aérofrein	04/09/2 009	Parc éolien d'Escales- Conilhac	Aude	0,75	2003	Non	Deux aérofreins d'une pale d'éolienne sont projetés à 5 m et 65 m du pied de l'éolienne.	L'arrêt d'urgence d'une éolienne se déclenche sans cause identifiée. Cet arrêt est anormalement brutal ce qui déclenche le détachement des 2 aérofreins de la pale.	Base de données ARIA	

Type d'accident	Date	Nom du parc	Départe ment	Puissance (en MW)	Année de mise en service	Technolog ie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information	Commentaire par rapport à l'utilisation dans l'étude de dangers
Chute d'un élément de nacelle	28/11/2 019	Parc éolien Champs Perdus	Somme	3	2014	Oui	Chute du capot de la nacelle d'une éolienne.	-	Base de données ARIA	
Mise en fonctionnemen t non-contrôlé	06/12/2 019	Parc éolien Entre Tille et Venelle	Côtes d'Or	2,5	-	Oui	L'éolienne se met à tourner malgré l'absence de raccordement électrique alors que les installateurs préparent sa mise en service au sein de l'éolienne.	Erreur de positionnement des angles des pales la veille de l'accident et présence de vent violent.	Base de données ARIA	
Rupture de pâles	09/12/2 019	Parc éolien Theil-Rabier et Montjean	Charent e	2	2016	Oui	Chute d'un bout de pale d'environ 7 m d'une éolienne. La pale s'est brisée en 3 morceaux principaux. Des débris solides ont été projetés sur 2 parcelles agricoles aux alentours. Un morceau de 30 m tombe 48 heures plus tard à cause de forts vents.	-	Base de données ARIA	
Incendie	16/12/2 019	Parc éolien De La Voie Bleriot Ouest	Eure-et- Loir	2,3	2005	Non	De la fumée blanche se dégage de l'éolienne. Les gaines protectrices des câbles de puissance ont brûlé sur 10 m de long.	Une combustion sans flamme avec une température atteinte en nacelle en dessous de 100 °C.	Base de données ARIA	
Incendie	17/12/2 019	Parc éolien Mont Gimont	Haute- Marne	2	2010	Oui	Un feu se déclare en partie basse d'une éolienne.	Défaillance électrique	Base de données ARIA	

Type d'accident	Date	Nom du parc	Départe ment	Puissance (en MW)	Année de mise en service	Technolog ie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information	Commentaire par rapport à l'utilisation dans l'étude de dangers
Rupture de pâles	07/02/2 020	Ferme éolienne de Périgné	Deux- Sèvres	8	2017	Oui	Impact de foudre causant la cassure d'une pale de l'éolienne E01	Foudre	Interne (Volkswind)	Arrêt de la machine pour poser la pale brisée à terre et procéder à sa réparation. L'accident n'a fait aucune victime.
Rupture de pâles	09/02/2 020	Eole Arrouaise	Aisne	8	Mars 2013	-	Une pale cède sous les rafales de vents, plusieurs morceaux s'arrachent et sont projetés à plus de 100 mètres.	Tempête Ciara	Article internet de « L'Aisne nouvelle » mis en ligne le 10/02/2020	
Rupture de pâles	25/02/2 020	Parc de Montjean – Theil-Rabier	Charent e	2	Fin 2016	oui	Rupture de pale	Inconnue	Article du journal « Charente Libre » du 27/02/2020	2 accidents en moins de trois mois provoquant la ratification d'un arrêté préfectoral imposant l'arrêt immédiat des 12 éoliennes.
Incendie	29/02/2 020	Parc de Boisbergues	Somme	2	2015	oui	Le moteur d'une éolienne prend feu, sans toucher les pales	Fuite d'huile	Base de données ARIA	

Type d'accident	Date	Nom du parc	Départe ment	Puissance (en MW)	Année de mise en service	Technolog ie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information	Commentaire par rapport à l'utilisation dans l'étude de dangers
Incendie	24/03/2 020	Parc La Bouleste	Aveyron	2	2010	oui	Le feu se déclare au niveau de la nacelle d'une éolienne.	Fuite d'huile	Base de données ARIA	
Fissure sur une pale	31/03/2 020	Parc éolien du Moulin de Merville	Aisne	2,5	2007	Non	A l'occasion d'un contrôle visuel effectué depuis le sol, un technicien constate une fissure sur la pale d'une éolienne.	Défaut de collage au moment de la fabrication de la pale. Les intempéries ont aggravé cette dégradation.	Base de données ARIA	
Fuite d'huile	10/04/2 020	Parc du Bois de Grisan	Morbiha n	2	2017	Oui	40 Litres d'huile s'écoulent le long du mât jusqu'au massif de fondation.	Défaut au niveau de l'accumulateur de l'éolienne.	Base de données ARIA	
Incendie	20/04/2 020	Parc Morne- Carrière	Martiniq ue	0,28	2004	Non	Un feu se déclare sur le générateur d'une éolienne déposée au sol en vue de son démantèlement.	Un court-circuit dû à un manicou (famille des marsupiaux).	Base de données ARIA	
Rupture de pale	30/04/2 020	Parc Plouarzel I	Finistère	0,66	2000	Non	Une pale présente une pliure et une partie chute au sol.	Impact de foudre ou mauvaise orientation des pales ou de coups de vent fort à répétition.	Base de données ARIA	
Incendie	01/08/2 020	Parc Sources de la Loire	Ardèche	2,05	2011	Oui	De la fumée se dégage de la nacelle. Des débris tombent au pied de l'éolienne.	Echauffement des pièces de protection (joint en caoutchouc) de la génératrice de l'éolienne.	Base de données ARIA	

Type d'accident	Date	Nom du parc	Départe ment	Puissance (en MW)	mise en	Technolog ie récente	Description sommaire de l'accident et dégâts	Cause probable de l'accident	Source(s) de l'information	Commentaire par rapport à l'utilisation dans l'étude de dangers
Fuite d'huile	01/09/2 020	Parc d'Escardes- Bouchy Saint- Genest	Marne	2,00	2016	Oui	Fuite d'huile d'une des éoliennes d'un parc éolien. Le produit a atteint le sol au pied du mât. Un kit anti-pollution a été posé autour de la fondation extérieure.	La fuite proviendrait d'un flexible allant d'un accumulateur à un collecteur de deux pales.	Base de données ARIA	

ANNEXE 6 : Scénarios génériques issus de l'analyse préliminaires des risques

Cette partie apporte un certain nombre de précisions par rapport à chacun des scénarios étudiés par le groupe de travail technique dans le cadre de l'analyse préliminaire des risques.

Le tableau générique issu de l'analyse préliminaire des risques est présenté dans la partie 7.4 de l'étude de dangers. Il peut être considéré comme représentatif des scénarios d'accident pouvant potentiellement se produire sur les éoliennes et pourra par conséquent être repris à l'identique dans les études de dangers.

La numérotation des scénarios ci-dessous reprend celle utilisée dans le tableau de l'analyse préliminaire des risques, avec un regroupement des scénarios par thématique, en fonction des typologies d'événement redoutés centraux identifiés grâce au retour d'expérience par le groupe de travail (« G » pour les scénarios concernant la glace, « I » pour ceux concernant l'incendie, « F » pour ceux concernant les fuites, « C » pour ceux concernant la chute d'éléments de l'éolienne, « P » pour ceux concernant les risques de projection, « E » pour ceux concernant les risques d'effondrement).

Scénarios relatifs aux risques liés à la glace (G01 et G02)

Scénario G01

En cas de formation de glace, les systèmes de préventions intégrés stopperont le rotor. La chute de ces éléments interviendra donc dans l'aire surplombée par le rotor, le déport induit par le vent étant négligeable.

Plusieurs procédures/systèmes permettront de détecter la formation de glace :

- Système de détection de glace
- Arrêt préventif en cas de déséquilibre du rotor
- Arrêt préventif en cas de givrage de l'anémomètre.

Note : Si les enjeux principaux étaient principalement humains, il conviendrait d'évoquer les enjeux matériels, avec la présence éventuelle d'éléments internes au parc éolien (poste de livraisons, sous-stations), ou extérieurs sous le surplomb de la machine.

Scénario G02

La projection de glace depuis une éolienne en mouvement interviendra lors d'éventuels redémarrages de la machine encore « glacée », ou en cas de formation de glace sur le rotor en mouvement simultanément à une défaillance des systèmes de détection de givre et de balourd.

Aux faibles vitesses de vents (vitesse de démarrage ou « cut in »), les projections resteront limitées au surplomb de l'éolienne. A vitesse de rotation nominale, les éventuelles projections seront susceptibles d'atteindre des distances supérieures au surplomb de la machine.

Scénarios relatifs aux risques d'incendie (101 à 107)

Les éventuels incendies interviendront dans le cas ou plusieurs conditions seraient réunies (Ex : Foudre + défaillance du système parafoudre = Incendie).

Le moyen de prévention des incendies consiste en un contrôle périodique des installations.

Dans l'analyse préliminaire des risques seulement quelques exemples vous sont fournis. La méthodologie suivante pourra aider à déterminer l'ensemble des scenarios devant être regardés :

- Découper l'installation en plusieurs parties : rotor, nacelle, mât, fondation et poste de livraison ;
- Déterminer à l'aide de mot clé les différentes causes (cause 1, cause 2) d'incendie possibles.

L'incendie peut aussi être provoqué par l'échauffement des pièces mécaniques en cas d'emballement du rotor (survitesse). Plusieurs moyens sont mis en place en matière de prévention :

- Concernant le défaut de conception et fabrication : contrôle qualité
- Concernant le non-respect des instructions de montage et/ou de maintenance : formation du personnel intervenant, contrôle qualité (inspections)
- Concernant les causes externes dues à l'environnement : Mise en place de solutions techniques visant à réduire l'impact. Suivant les constructeurs, certains dispositifs sont de série ou en option. Le choix des options est effectué par l'exploitant en fonction des caractéristiques du site.

L'emballement peut notamment intervenir lors de pertes d'utilités. Ces pertes d'utilités peuvent être la conséquence de deux phénomènes :

- Perte de réseau électrique : l'alimentation électrique de l'installation est nécessaire pour assurer le fonctionnement des éoliennes (orientation, appareils de mesures et de contrôle, balisage, ...) ;
- Perte de communication : le système de communication entre le parc éolien et le superviseur à distance du parc peut être interrompu pendant une certaine durée.

Concernant la perte du réseau électrique, celle-ci peut être la conséquence d'un défaut sur le réseau d'alimentation du parc éolien au niveau du poste source. En fonction de leurs caractéristiques techniques, le comportement des éoliennes face à une perte d'utilité peut être différent (fonction du constructeur). Cependant, deux systèmes sont couramment rencontrés :

- Déclenchement au niveau du rotor du code de freinage d'urgence, entrainant l'arrêt des éoliennes ;

- Basculement automatique de l'alimentation principale sur l'alimentation de secours (batteries) pour arrêter les aérogénérateurs et assurer la communication vers le superviseur.

Concernant la perte de communication entre le parc éolien et le superviseur à distance, celle-ci n'entraîne pas d'action particulière en cas de perte de la communication pendant une courte durée.

En revanche, en cas de perte de communication pendant une longue durée, le superviseur du parc éolien concerné dispose de plusieurs alternatives dont deux principales :

- Mise en place d'un réseau de communication alternatif temporaire (faisceau hertzien, agent technique local...);
- Mise en place d'un système autonome d'arrêt à distance du parc par le superviseur.

Les solutions aux pertes d'utilités étant diverses, les porteurs de projets pourront apporter dans leur étude de danger une description des protocoles qui seront mis en place en cas de pertes d'utilités.

Scénarios relatifs aux risques de fuites (F01 à F02)

Les fuites éventuelles interviendront en cas d'erreur humaine ou de défaillance matérielle.

Une attention particulière est à porter aux mesures préventives des parcs présents dans des zones protégées au niveau environnemental, notamment en cas de présence de périmètres de protection de captages d'eau potable (identifiés comme enjeux dans le descriptif de l'environnement de l'installation). Dans ce dernier cas, un hydrogéologue agréé devra se prononcer sur les mesures à prendre en compte pour préserver la ressource en eau, tant au niveau de l'étude d'impact que de l'étude de danger. Plusieurs mesures pourront être mises en place (photographie du fond de fouille des fondations pour montrer que la nappe phréatique n'a pas été atteinte, comblement des failles karstiques par des billes d'argile, utilisation de graisses végétales pour les engins, ...).

Scénario F01

En cas de rupture de flexible, perçage d'un contenant ..., il peut y avoir une fuite d'huile ou de graisse ... alors que l'éolienne est en fonctionnement. Les produits peuvent alors s'écouler hors de la nacelle, couler le long du mât et s'infiltrer dans le sol environnant l'éolienne.

Plusieurs procédures/actions permettront d'empêcher l'écoulement de ces produits dangereux :

- Vérification des niveaux d'huile lors des opérations de maintenance
- Détection des fuites potentielles par les opérateurs lors des maintenances
- Procédure de gestion des situations d'urgence

Deux événements peuvent être aggravants :

- Ecoulement de ces produits le long des pales de l'éolienne, surtout si celle-ci est en fonctionnement.

Les produits seront alors projetés aux alentours.

- Présence d'une forte pluie qui dispersa rapidement les produits dans le sol.

Scénario F02

Lors d'une maintenance, les opérateurs peuvent accidentellement renverser un bidon d'huile, une bouteille de solvant, un sac de graisse ... Ces produits dangereux pour l'environnement peuvent s'échapper de l'éolienne ou être renversés hors de cette dernière et infiltrer les sols environnants.

Plusieurs procédures/actions permettront d'empêcher le renversement et l'écoulement de ces produits :

- Kits anti-pollution associés à une procédure de gestion des situations d'urgence
- Sensibilisation des opérateurs aux bons gestes d'utilisation des produits

Ce scénario est à adapter en fonction des produits utilisés.

Evénement aggravant : fortes pluies qui disperseront rapidement les produits dans le sol.

Scénarios relatifs aux risques de chute d'éléments (C01 à C03)

Les scénarii de chutes concernent les éléments d'assemblage des aérogénérateurs : ces chutes sont déclenchées par la dégradation d'éléments (corrosion, fissures, ...) ou des défauts de maintenance (erreur humaine).

Les chutes sont limitées à un périmètre correspondant à l'aire de survol.

Scénarios relatifs aux risques de projection de pales ou de fragments de pales (P01 à P06)

Les événements principaux susceptibles de conduire à la rupture totale ou partielle de la pale sont liés à 3 types de facteurs pouvant intervenir indépendamment ou conjointement :

- Défaut de conception et de fabrication
- Non-respect des instructions de montage et/ou de maintenance
- Causes externes dues à l'environnement : glace, tempête, foudre...

Si la rupture totale ou partielle de la pale intervient lorsque l'éolienne est à l'arrêt on considère que la zone d'effet sera limitée au surplomb de l'éolienne.

Si l'éolienne est en fonctionnement la zone d'effet sera déterminée en fonction de l'étude balistique et du site. L'emballement de l'éolienne constitue un facteur aggravant en cas de projection de tout ou partie d'une pale.

Cet emballement peut notamment être provoqué par la perte d'utilité décrite au 2.2 de la présente partie C (scénarios incendies).

Scénario P01

En cas de défaillance du système d'arrêt automatique de l'éolienne en cas de survitesse, les contraintes importantes exercées sur la pale (vent trop fort) pourraient engendrer la casse de la pale et sa projection.

Scénario P02

Les contraintes exercées sur les pales - contraintes mécaniques (vents violents, variation de la répartition de la masse due à la formation de givre...), conditions climatiques (averses violentes de grêle, foudre...) - peuvent entraîner la dégradation de l'état de surface et à terme l'apparition de fissures sur la pale.

Prévention : Maintenance préventive (inspections régulières des pales, réparations si nécessaire).

Facteur aggravant : Infiltration d'eau et formation de glace dans une fissure, vents violents, emballement de l'éolienne.

Scénarios P03

Un mauvais serrage de base ou le desserrage avec le temps des goujons des pales pourrait amener au décrochage total ou partiel de la pale, dans le cas de pale en plusieurs tronçons.

Scénarios relatifs aux risques d'effondrement des éoliennes (E01 à E10)

Les événements pouvant conduire à l'effondrement de l'éolienne sont liés à 3 types de facteurs pouvant intervenir indépendamment ou conjointement :

- Erreur de dimensionnement de la fondation : Contrôle qualité, respect des spécifications techniques du constructeur de l'éolienne, études de sol, contrôle technique de construction ;

Non-respect des instructions de montage et/ou de maintenance : Formation du personnel intervenant

- Causes externes dues à l'environnement : séisme, ...

ANNEXE 7 : Probabilité d'atteinte et risque individuel

Le risque individuel encouru par un nouvel arrivant dans la zone d'effet d'un phénomène de projection ou de chute est appréhendé en utilisant la probabilité de l'atteinte par l'élément chutant ou projeté de la zone fréquentée par le nouvel arrivant. Cette probabilité est appelée probabilité d'accident.

Cette probabilité d'accident est le produit de plusieurs probabilités :

Paccident = PERC x Porientation x Protation x Patteinte x Pprésence

Perc = probabilité que l'événement redouté central (défaillance) se produise = probabilité de départ

P_{orientation} = probabilité que l'éolienne soit orientée de manière à projeter un élément lors d'une défaillance dans la direction d'un point donné (en fonction des conditions de vent notamment)

P_{rotation} = probabilité que l'éolienne soit en rotation au moment où l'événement redouté se produit (en fonction de la vitesse du vent notamment)

Patteinte = probabilité d'atteinte d'un point donné autour de l'éolienne (sachant que l'éolienne est orientée de manière à projeter un élément en direction de ce point et qu'elle est en rotation)

P_{présence} = probabilité de présence d'un enjeu donné au point d'impact sachant que l'élément est projeté en ce point donné

Par souci de simplification, la probabilité d'accident sera calculée en multipliant la borne supérieure de la classe de probabilité de l'événement redouté central par le degré d'exposition. Celui-ci est défini comme le ratio entre la surface de l'objet chutant ou projeté et la zone d'effet du phénomène.

Le tableau ci-dessous récapitule les probabilités d'atteinte en fonction de l'événement redouté central.

Evènement redouté	Borne supérieure de la	Degré d'exposition	Probabilité d'atteinte
central	classe de probabilité de		
	l'ERC (pour les éoliennes		
	récentes)		
Effondrement	10-4	10-2	10 ⁻⁶ (E)
Chute de glace	1	5*10 ⁻²	5 10 ⁻² (A)
Chute d'éléments	10 ⁻³	1,8*10-2	1,8 10 ⁻⁵ (D)
Projection de tout ou	10-4	10-2	10 ⁻⁶ (E)

partie de pale			
Projection de morceaux	10-2	1,8*10 ⁻⁶	1,8 10 ⁻⁸ (E)
de glace			

Les seuls Evénements Redoutés Centraux (ERC) pour lesquels la probabilité d'atteinte n'est pas de classe E sont ceux qui concernent les phénomènes de chutes de glace ou d'éléments dont la zone d'effet est limitée à la zone de survol des pales et où des panneaux sont mis en place pour alerter le public de ces risques.

De plus, les zones de survol sont comprises dans l'emprise des baux signés par l'exploitant avec le propriétaire du terrain ou à défaut dans l'emprise des autorisations de survol si la zone de survol s'étend sur plusieurs parcelles. La zone de survol ne peut donc pas faire l'objet de constructions nouvelles pendant l'exploitation de l'éolienne.

ANNEXE 8: Glossaire

Les définitions ci-dessous sont reprises de la circulaire du 10 mai 2010. Ces définitions sont couramment utilisées dans le domaine de l'évaluation des risques en France.

Accident : Evénement non désiré, tel qu'une émission de substance toxique, un incendie ou une explosion résultant de développements incontrôlés survenus au cours de l'exploitation d'un établissement qui entraîne des conséquences/ dommages vis à vis des personnes, des biens ou de l'environnement et de l'entreprise en général. C'est la réalisation d'un phénomène dangereux, combinée à la présence d'enjeux vulnérables exposés aux effets de ce phénomène.

Cinétique: Vitesse d'enchaînement des événements constituant une séquence accidentelle, de l'événement initiateur aux conséquences sur les éléments vulnérables (cf. art. 5 à 8 de l'arrêté du 29 septembre 2005). Dans le tableau APR proposé, la cinétique peut être lente ou rapide. Dans le cas d'une cinétique lente, les enjeux ont le temps d'être mises à l'abri. La cinétique est rapide dans le cas contraire.

Danger: Cette notion définit une propriété intrinsèque à une substance (butane, chlore...), à un système technique (mise sous pression d'un gaz...), à une disposition (élévation d'une charge...), à un organisme (microbes), etc., de nature à entraîner un dommage sur un « élément vulnérable » (sont ainsi rattachées à la notion de « danger » les notions d'inflammabilité ou d'explosivité, de toxicité, de caractère infectieux, etc. inhérentes à un produit et celle d'énergie disponible [pneumatique ou potentielle] qui caractérisent le danger).

Efficacité (pour une mesure de maîtrise des risques) ou capacité de réalisation : Capacité à remplir la mission/fonction de sécurité qui lui est confiée pendant une durée donnée et dans son contexte d'utilisation. En général, cette efficacité s'exprime en pourcentage d'accomplissement de la fonction définie. Ce pourcentage peut varier pendant la durée de sollicitation de la mesure de maîtrise des risques. Cette efficacité est évaluée par rapport aux principes de dimensionnement adapté et de résistance aux contraintes spécifiques.

Evénement initiateur : Événement, courant ou anormal, interne ou externe au système, situé en amont de l'événement redouté central dans l'enchaînement causal et qui constitue une cause directe dans les cas simples ou une combinaison d'événements à l'origine de cette cause directe.

Evénement redouté central : Evénement conventionnellement défini, dans le cadre d'une analyse de risque, au centre de l'enchaînement accidentel. Généralement, il s'agit d'une perte de confinement pour les fluides et d'une perte d'intégrité physique pour les solides. Les événements situés en amont sont conventionnellement appelés « phase pré-accidentelle » et les événements situés en aval « phase post-accidentelle ».

Fonction de sécurité: Fonction ayant pour but la réduction de la probabilité d'occurrence et/ou des effets et conséquences d'un événement non souhaité dans un système. Les principales actions assurées par les fonctions de sécurité en matière d'accidents majeurs dans les installations classées sont: empêcher, éviter, détecter, contrôler, limiter. Les fonctions de sécurité identifiées peuvent être assurées à partir d'éléments techniques de sécurité, de procédures organisationnelles (activités humaines), ou plus généralement par la combinaison des deux.

Gravité : On distingue l'intensité des effets d'un phénomène dangereux de la gravité des conséquences découlant de l'exposition d'enjeux de vulnérabilités données à ces effets.

La gravité des conséquences potentielles prévisibles sur les personnes, prises parmi les intérêts visés à l'article L. 511-1 du code de l'environnement, résulte de la combinaison en un point de l'espace de l'intensité des effets d'un phénomène dangereux et de la vulnérabilité des enjeux potentiellement exposés.

Indépendance d'une mesure de maîtrise des risques : Faculté d'une mesure, de par sa conception, son exploitation et son environnement, à ne pas dépendre du fonctionnement d'autres éléments et notamment d'une part d'autres mesures de maîtrise des risques, et d'autre part, du système de conduite de l'installation, afin d'éviter les modes communs de défaillance ou de limiter leur fréquence d'occurrence.

Intensité des effets d'un phénomène dangereux : Mesure physique de l'intensité du phénomène (thermique, toxique, surpression, projections). Parfois appelée gravité potentielle du phénomène dangereux (mais cette expression est source d'erreur). Les échelles d'évaluation de l'intensité se réfèrent à des seuils d'effets moyens conventionnels sur des types d'éléments vulnérables [ou enjeux] tels que « homme », « structures ». Elles sont définies, pour les installations classées, dans l'arrêté du 29/09/2005. L'intensité ne tient pas compte de l'existence ou non d'enjeux exposés. Elle est cartographiée sous la forme de zones d'effets pour les différents seuils.

Mesure de maîtrise des risques (ou barrière de sécurité) : Ensemble d'éléments techniques et/ou organisationnels nécessaires et suffisants pour assurer une fonction de sécurité. On distingue parfois :

- les mesures (ou barrières) de prévention : mesures visant à éviter ou limiter la probabilité d'un événement indésirable, en amont du phénomène dangereux
- les mesures (ou barrières) de limitation : mesures visant à limiter l'intensité des effets d'un phénomène dangereux
- les mesures (ou barrières) de protection : mesures visant à limiter les conséquences sur les enjeux potentiels par diminution de la vulnérabilité.

Phénomène dangereux : Libération d'énergie ou de substance produisant des effets, au sens de l'arrêté du 29 septembre 2005, susceptibles d'infliger un dommage à des enjeux (ou éléments vulnérables) vivantes ou matérielles, sans préjuger l'existence de ces dernières. C'est une « Source potentielle de dommages »

Potentiel de danger (ou « source de danger », ou « élément dangereux », ou « élément porteur de danger ») : Système (naturel ou créé par l'homme) ou disposition adoptée et comportant un (ou plusieurs) « danger(s) » ; dans le domaine des risques technologiques, un « potentiel de danger » correspond à un ensemble technique nécessaire au fonctionnement du processus envisagé.

Prévention : Mesures visant à prévenir un risque en réduisant la probabilité d'occurrence d'un phénomène dangereux.

Protection : Mesures visant à limiter l'étendue ou/et la gravité des conséquences d'un accident sur les éléments vulnérables, sans modifier la probabilité d'occurrence du phénomène dangereux correspondant.

Probabilité d'occurrence : Au sens de l'article L. 512-1 du code de l'environnement, la probabilité d'occurrence d'un accident est assimilée à sa fréquence d'occurrence future estimée sur l'installation considérée. Elle est en général différente de la fréquence historique et peut s'écarter, pour une installation donnée, de la probabilité d'occurrence moyenne évaluée sur un ensemble d'installations similaires.

Attention aux confusions possibles :

- 1. Assimilation entre probabilité d'un accident et celle du phénomène dangereux correspondant, la première intégrant déjà la probabilité conditionnelle d'exposition des enjeux. L'assimilation sous-entend que les enjeux sont effectivement exposées, ce qui n'est pas toujours le cas, notamment si la cinétique permet une mise à l'abri ;
- 2. Probabilité d'occurrence d'un accident x sur un site donné et probabilité d'occurrence de l'accident x, en moyenne, dans l'une des N installations du même type (approche statistique).

Réduction du risque: Actions entreprises en vue de diminuer la probabilité, les conséquences négatives (ou dommages), associés à un risque, ou les deux. [FD ISO/CEI Guide 73]. Cela peut être fait par le biais de chacune des trois composantes du risque, la probabilité, l'intensité et la vulnérabilité:

- Réduction de la probabilité : par amélioration de la prévention, par exemple par ajout ou fiabilisation des mesures de sécurité
- Réduction de l'intensité :
 - par action sur l'élément porteur de danger (ou potentiel de danger), par exemple substitution par une substance moins dangereuse, réduction des vitesses de rotation, etc.
 - réduction des dangers: la réduction de l'intensité peut également être accomplie par des mesures de limitation

La réduction de la probabilité et/ou de l'intensité correspond à une réduction du risque « à la source ».

- Réduction de la vulnérabilité : par éloignement ou protection des éléments vulnérables (par exemple par la maîtrise de l'urbanisation, ou par des plans d'urgence).

Risque : « Combinaison de la probabilité d'un événement et de ses conséquences » (ISO/CEI 73), « Combinaison de la probabilité d'un dommage et de sa gravité » (ISO/CEI 51).

Scénario d'accident (majeur): Enchaînement d'événements conduisant d'un événement initiateur à un accident (majeur), dont la séquence et les liens logiques découlent de l'analyse de risque. En général, plusieurs scénarios peuvent mener à un même phénomène dangereux pouvant conduire à un accident (majeur): on dénombre autant de scénarios qu'il existe de combinaisons possibles d'événements y aboutissant. Les scénarios d'accident obtenus dépendent du choix des méthodes d'analyse de risque utilisées et des éléments disponibles.

Temps de réponse (pour une mesure de maîtrise des risques): Intervalle de temps requis entre la sollicitation et l'exécution de la mission/fonction de sécurité. Ce temps de réponse est inclus dans la cinétique de mise en œuvre d'une fonction de sécurité, cette dernière devant être en adéquation [significativement plus courte] avec la cinétique du phénomène qu'elle doit maîtriser.

10. Annexes

Les définitions suivantes sont issues de l'arrêté du 26 août 2011, modifié par les arrêtés du 22 juin 2020 et du 10 décembre 2021, relatif aux installations de production d'électricité utilisant l'énergie mécanique du vent au sein d'une installation soumise à autorisation au titre de la rubrique 2980 de la législation des installations classées pour la protection de l'environnement :

Aérogénérateur: dispositif mécanique destiné à convertir l'énergie du vent en électricité, composé des principaux éléments suivants: un mât, une nacelle, une génératrice, un rotor constitué d'un moyeu et de pales, ainsi que, le cas échéant un transformateur.

Survitesse : Vitesse de rotation des parties tournantes (rotor constitué du moyeu et des pales ainsi que la ligne d'arbre jusqu'à la génératrice) supérieure à la valeur maximale indiquée par le constructeur.

Enfin, quelques sigles utiles employés dans le présent guide sont listés et explicités ci-dessous :

ICPE : Installation Classée pour la Protection de l'Environnement

SER: Syndicat des Energies Renouvelables

FEE: France Energie Eolienne (branche éolienne du SER)

INERIS: Institut National de l'EnviRonnement Industriel et des RisqueS

EDD: Etude de dangers*

APR : Analyse Préliminaire des Risques

ERP: Etablissement Recevant du Public

ANNEXE 9 : Bibliographie et références utilisées

- [1] L'évaluation des fréquences et des probabilités à partir des données de retour d'expérience (ref DRA-11-117406-04648A), INERIS, 2011
- [2] NF EN 61400-1 Eoliennes Partie 1 : Exigences de conception, Juin 2006
- [3] Wind Turbine Accident data to 31 March 2011, Caithness Windfarm Information Forum
- [4] Site Specific Hazard Assessment for a wind farm project Case study Germanischer Lloyd, Windtest Kaiser-Wilhelm-Koog GmbH, 2010/08/24
- [5] Guide for Risk-Based Zoning of wind Turbines, Energy research centre of the Netherlands (ECN), H. Braam, G.J. van Mulekom, R.W. Smit, 2005
- [6] Specification of minimum distances, Dr-ing. Veenker ingenieurgesellschaft, 2004
- [7] Permitting setback requirements for wind turbine in California, California Energy Commission Public Interest Energy Research Program, 2006
- [8] Oméga 10 : Evaluation des barrières techniques de sécurité, INERIS, 2005
- [9] Arrêté du 26 août 2011, modifié par les arrêtés du 22 juin 2020 et du 10 décembre 2021, relatif aux installations de production d'électricité utilisant l'énergie mécanique du vent au sein d'une installation soumise à autorisation au titre de la rubrique 2980 de la législation des installations classées pour la protection de l'environnement
- [10] Arrêté du 29 Septembre 2005 relatif à l'évaluation et à la prise en compte de la probabilité d'occurrence, de la cinétique, de l'intensité des effets et de la gravité des conséquences des accidents potentiels dans les études de dangers des installations classées soumises à autorisation
- [11] Circulaire du 10 mai 2010 récapitulant les règles méthodologiques applicables aux études de dangers, à l'appréciation de la démarche de réduction du risque à la source et aux plans de prévention des risques technologiques (PPRT) dans les installations classées en application de la loi du 30 Juillet 2003
- [12] Bilan des déplacements en Val-de-Marne, édition 2009, Conseil Général du Val-de-Marne
- [13] Arrêté du 29 Septembre 2005 relatif à l'évaluation et à la prise en compte de la probabilité d'occurrence, de la cinétique, de l'intensité des effets et de la gravité des conséquences des accidents potentiels dans les études de dangers des installations classées soumises à autorisation
- [14] Alpine test site Gütsch: monitoring of a wind turbine under icing conditions- R. Cattin etal.
- [15] Wind energy production in cold climate (WECO), Final report Bengt Tammelin et al. Finnish Meteorological Institute, Helsinki, 2000
- [16] Rapport sur la sécurité des installations éoliennes, Conseil Général des Mines Guillet R., Leteurtrois J.-P. juillet 2004
- [17] Risk analysis of ice throw from wind turbines, Seifert H., Westerhellweg A., Kröning J. DEWI, avril 2003
- [18] Wind energy in the BSR: impacts and causes of icing on wind turbines, Narvik University College, novembre 2005

ANNEXE 10 : Fiches de sécurité

FICHE DE DONNEES DE SECURITE

"VEUILLEZ LIRE CES INFORMATIONS AVEC SOIN AVANT D'UTILISER OU D'ELIMINER LE PRODUIT

33013 HAVOLINE XLC 50/50 (OF01)

1. IDENTIFICATION PRODUIT ET ENTREPRISE

CODE ET NOM PRODUIT

33013 HAVOLINE XLC 50/50 (OF01)

DESCRIPTION

Antigel

ENTREPRISE

Chevron France Parc Les Algorithmes Bâtiment Platon 141-145, rue Michel Carré 95815 Argenteuil Cedex

FRANCE

Tel: 0033/1 34 34 13 73 Fax: 0033/1 34 34 13 70

Emergency Phone Number: 0044/(0)18 65 407 333

2. COMPOSITION/INFORMATIONS SUR LES COMPOSANTS

Nom % poids N°EC Ethylène-glycol 45 - 54,99 203-473-3 107-21-1 Nocif en cas d'ingestion. Xn R 22 2-ethylhexanoate de Sodium < 5 19766-89-3 243-283-8

NOCIF

Risque possible pendant la grossesse d'effets néfastes pour l'enfant.

3. IDENTIFICATION DES DANGERS

Classification Produit Effets aigus de l'exposition

<u>humaine</u>

Xn R 63

Inhalation

Les vapeurs et le brouillard, au-delà des

concentrations admissibles ou en

concentrations exceptionnellement élevées dues à une pulvérisation, au chauffage du produit ou à une exposition en un endroit mal ventilé ou un espace confiné, peuvent provoquerune irritation du nez et de la gorge,

des maux de tête, des nausées et de la somnolence.

Contact avec la peau Un contact bref peut provoquer une légère irritation. Un contact prolongé, par exemple

avec des vêtements imprégnés du produit, peut provoquer une irritation et un malaise plus graves, sous forme de rougeur et d'oedème

Révisée le : 28/06/2004 Remplace la fiche du : 28/06/2004

page: 1/8 Pollux6®©

"VEUILLEZ LIRE CES INFORMATIONS AVEC SOIN AVANT D'UTILISER OU D'ELIMINER LE PRODUIT

33013 HAVOLINE XLC 50/50 (OF01)

Peut provoquer une irritation, ressentie comme Contact avec les yeux

un léger malaise et se manifestant par une légère rougeur excessive des yeux.

L'éthylène glycol et le diéthylène glycol sont Ingestion

toxiques par ingestion. La dose létale pour les adultes est de 1-2 ml/kg, soit environ 100 ml. Les symptômes comprennent des vertiges, des troubles de l'élocution, une perte de

coordination, de laconfusion, des syncopes, des

nausées, des vomissements, une accélération du rythme cardiaque, des difficultés respiratoires, des troubles visuels, des convulsions et un collapsus. Les symptômes peuvent être retardés. Il peut également se

produire uneoligurie, une insuffisance rénale et des lésions du système nerveux.

De l'aspiration peut se produire pendant l'ingestion ou le vomissement, provoquant des

lésions pulmonaires.

L'ingestion répétée peut provoquer des lésions rénales.

Une surexposition répétée peut aggraver une insuffisance rénale existante.

Suite aux propriétés irritantes, un contact répété

avec la peau peut aggraver une dermatite existante (pathologie cutanée)

Estimé de ne pas être toxique pour les espèces Effets de l'exposition à l'environnement aquatiques.

4. PREMIERS SECOURS

Effets chroniques d'une

cas d'affections existantes

Aggravation conditions médicales en

exposition à l'homme

Route d'exposition

Ingestion

Inhalation En cas d'irritation, maux de tête, nausées ou somnolence, amener la victime au grand air.

Consulter un médecin si la respiration devient difficile ou si les symptômes persistent. Laver abondamment la peau à l'eau

Contact avec la peau savonneuse pendant plusieurs minutes. Consulter un médecin si une irritation de la

peau apparaît ou persiste.

Contact avec les yeux Rincer immédiatement et abondamment les

yeux à l'eaupendant au moins 15 minutes Maintenir les paupières écartées afin de rincer toute la surface de l'oeil. Consulter un médecin. Consulter immédiatement un médecin. Si la victime est consciente et peut avaler, lui faire

boire deux verres d'eau (500 ml), mais ne pas

Révisée le : 28/06/2004 Remplace la fiche du : 28/06/2004

page: 2/8 Pollux6®©

"VEUILLEZ LIRE CES INFORMATIONS AVEC SOIN AVANT D'UTILISER OU D'ELIMINER LE PRODUIT

33013 HAVOLINE XLC 50/50 (OF01)

faire vomir. Si le vomissement se produit, donner des fluides de nouveau. Un médecin doit déterminer si lacondition de la victime autorise le vomissement ou l'évacuation de l'estomac.

Autres recommandations

L'empoisonnement par éthylène glycol peut provoquer tout d'abord des changements de comportement, une somnolence, des vomissements, de la diarrhée, une soif et des convulsions. Des symptômes tardifs d'empoisonnement sont des

lésions/insuffisancesrénales avec acidose métabolique. Le traitement immédiat, combiné si nécessaire à une hémodialyse, peut réduire les effets toxiques. L'injection intraveineuse d'éthanol en solution de bicarbonate de soude

est un antidote reconnu il existe

d'autresantidotes à l'éthylène glycol. S'adresser à un centre anti-poisons pour de plus amples informations sur le traitement.

5. MESURES DE LUTTE CONTRE L'INCENDIE

Moyens d'extinction appropriés

Utiliser une pulvérisation d'eau, de la poudre sèche, de la mousse ou du dioxyde de carbone. L'eau ou la mousse peuvent provoquer un écumage. Utiliser de l'eau pour refroidir les conteneurs exposés au feu. Si une fuite ou déversement n'est pas en feu, utiliser une pulvérisation d'eau pour disperser les vapeurs et protéger les personnes qui tentent d'arrêter la fuite.

Moyens d'extinction à ne pas utiliser pour des raisons de sécurité Risques particuliers résultant de l'exposition au produit en tant que

aux produits de la combustion, aux gaz produits

Equipement de protection spécial pour le personnel de lutte contre le

feu

Néant

Jet d'eau

La nature de l'équipement spécial de protection dépendra de l'ampleur de l'incendie, le degré de confinement de l'incendie et de la ventilation naturelle disponible. Des vêtements résistants au feu et des appareils respiratoires autonomes sontrecommandés en cas d'incendies dans des espaces confins et pauvrement ventilés. Un équipement complètement réfractaire est

Révisée le : 28/06/2004 Remplace la fiche du : 28/06/2004

page: 3/8 Pollux6®©

"VEUILLEZ LIRE CES INFORMATIONS AVEC SOIN AVANT D'UTILISER OU D'ELIMINER LE PRODUIT

11

33013 HAVOLINE XLC 50/50 (OF01)

recommandé pour chaque incendie important dans lequel ce produit est impliqué.

6. MESURES A PRENDRE EN CAS DE DISPERSION ACCIDENTELLE

Procédures en cas d'échappement

ou de fuite du produit

Ventiler la zone. Eviter d'inhaler les vapeurs. Utiliser un appareil respiratoire autonome ou à adduction d'air en cas de déversements importants ou dans des espaces confinés. Contenir le déversement si possible. Essuyer ou absorber sur des substancesappropriées et ramasser à la pelle. Empêcher l'arrivé dans les égoûts et les cours d'eau. Eviter le contact avec la peau, les yeux et les vêtements.

7. MANIPULATION ET STOCKAGE

Usage(s) spécifique(s)

Protection des yeux

Manipulation Réduire les périodes d'exposition aux

températures élevées. Eviter la contamination

par l'eau.

Stockage Le transport, la manipulation et l'entreposage

doivent se faire conformément aux réglementations locales en vigueur, et seulement dans des conteneurs étiquettés

désignés pour ce produit.

Pour l'utilisation du produit concerné, veuillez vous référer au Bulletin d'Information Produit (PIL)

8. CONTROLE DE L'EXPOSITION/PROTECTION INDIVIDUELLE

<u>Protection respiratoire</u>

Les concentrations ambiantes doivent être

tenues à des niveaux aussi bas que possibles. En cas de génération de vapeurs, brouillards ou poussières, l'utilisation d'un respirateur approuvé est appropriée. Un appareil respiratoire adéquat à adductiond'air doit être utilisé pour le nettoyage d'importants déversements ou lors de la pénétration dans des réservoirs, citernes ou autres espaces

confinés. Voir si-dessous pour les concentrations admissibles applicables. Eviter le contact avec la peau. Gants

Protection des mains et de la peau Eviter le contact avec la peau. Gants recommendés. En cas de contamination, laver

la peau exposée avec de l'eau et du savon. Le port de lunettes de protection contre les

Révisée le : 28/06/2004 Remplace la fiche du : 28/06/2004

page: 4/8 Pollux6®©

"VEUILLEZ LIRE CES INFORMATIONS AVEC SOIN AVANT D'UTILISER OU D'ELIMINER LE PRODUIT

33013 HAVOLINE XLC 50/50 (OF01)

produits chimiques est recommandé afin

d'éviter tout contact avec les yeux.

Ethylène glycol : TWA/OEL (8hr) : 50 ppm = 125 mg/m3 ; ACGIH : STEL = 100 mg/m3 Limite d'exposition au produit

9. PROPRIETES PHYSIQUES ET CHIMIQUES

Aspect Liquide orange Odeur Odeur légère Densité relative 1.0 kg/l @ 15 ℃

8.4 Solubilité dans l'eau 100%

10. STABILITE ET REACTIVITE

Conditions à éviter Sources d'ignition comme flammes, étincelles,

surfaces très chaudes.

Produits à éviter Eviter le contact avec des oxydants forts. Oxydes de carbone, aldéhydes et cétones. Produits de décomposition

dangereux

11. INFORMATIONS TOXICOLOGIQUES

<u>Aigus</u>

Chroniques

Inhalation Des concentrations élevées de vapeurs ou

brouillards sont probablement irritants pour les voies respiratoires et peuvent causer des nausées, des étourdissements, des maux de

tête et des somnolences.

Légèrement irritant pour la peau. Contact avec la peau Ne cause probablement pas plus qu'une Contact avec les yeux

irritation transitoire ou une rougeur en cas de

contact accidentel avec les veux.

Ingestion Dangereux. Provoque des maux de têtes, de la

faiblesse, de la confusion, une perte de coordination, des étourdissemnts, des difficultés de la marche de nausées, des vomissements, une baisse de la pression sanguine, une accélération du rythme cardiaque, un oedème poulmonaire, des insuffisances rénales, l'inconscience, des convulsions et le coma. Les symptômes peuvent apparaître tardivement. Un

empoisonnement grave peut causer la mort. L'ingestion répétée peut provoquer des lésions

Révisée le : 28/06/2004 Remplace la fiche du : 28/06/2004

page: 5/8 Pollux6®©

"VEUILLEZ LIRE CES INFORMATIONS AVEC SOIN AVANT D'UTILISER OU D'ELIMINER LE PRODUIT

u

33013 HAVOLINE XLC 50/50 (OF01)

Une surexposition répétée peut aggraver une insuffisance rénale existante.

12. INFORMATIONS ECOLOGIQUES

Mobilité Non déterminé

Persistance et dégradabilité Selon les critères de la CEE : Considéré

facilement biodégradable

<u>Potentiel de bio-accumulation</u> Ce produit est estimé contenir un faible potentiel

de bioconcentrats.

<u>Toxicité aquatique</u> Estimé de ne pas être toxique pour les espèces

aquatiques.

Remarques II est peu probable que le déversement de

petites quantités aurait des effets adverses sur le fonctionnement d'installations de traitement

d'eau. WGK=1

13. CONSIDERATIONS RELATIVES A L'ELIMINATION

Elimination Rejeter conformément aux législations locales

et aux réglementations régissant le rejet des produits chimiques

EWC-Nr. : 16 01 14

14. INFORMATIONS RELATIVES AU TRANSPORT

Transport Non réglementé

15. INFORMATIONS REGLEMENTAIRES

Classification/Information étiquettage

<u>Symbole(notation par une</u> <u>lettre)+Indication du danger</u>

Phrases de risques

Révisée le : 28/06/2004

Phrases de securite a usage public

Sous la directive EEC/67/548 (substances dangereuses) et EEC/1999/45 (préparations dangereuses) :

Xn NOCIF

Xn R 22 Nocif en cas d'ingestion.

S 2 Conserver hors de la portée des

enfants.

S 46 En cas d'ingestion, consulter immédiatement un médecin et lui montrer

l'emballage ou l'étiquette.

Remplace la fiche du : 28/06/2004

page: 6/8 Pollux6®©

"VEUILLEZ LIRE CES INFORMATIONS AVEC SOIN AVANT D'UTILISER OU D'ELIMINER LE PRODUIT

11

33013 HAVOLINE XLC 50/50 (OF01)

Phrases de securite a usage

industriel

S 36/37 Porter un vêtement de protection et

des gants appropriés.

Composants dangereux

Ethylène-glycol

Xn R 22 Nocif en cas d'ingestion.

Informations additionelles

Se référer à toute mesure nationale pertinente.

16. AUTRES INFORMATIONS

Autres informations

Une consommation aiguë ou chronique de produits contenant de l'éthylène glycol peut provoquer des effets nocifs graves, pouvant entraîner la mort, chez les humains et les animaux. Maintenir hors de portée des enfants. Ces produits ne peuvent êtreutilisés dans les systèmes d'eaux potables (eau de boisson) ou autres systèmes susceptibles de contaminer l'eau potable (p.ex. véhicules de loisirs, systèmes d'hivernage pour eaux potables). Ne pas transvaser dans des récipients non-

étiquetés.

Texte intégral des phrases de risque

Xn R 22 Nocif en cas d'ingestion. Xn R 63 Risque possible pendant la grossesse d'effets néfastes pour l'enfant.

3,7,8,16

Des changements ont été apportés à

la (aux) section(s) : Révisée le : 28/06/2004

Remplace la fiche du : 28/06/2004

Toute information contenue dans cette Fiche de Données de Sécurité et, en particulier, les informations portant sur la santé, la sécurité et l'environnement sont aussi précises que le permettent nos connaissances et ce que nous croyons à la date de parution spécifiée. Toutefois, l'entreprise n'accorde aucune garantie ni admission, explicites ou implicites, en ce qui concerne la précision ou l'exhaustivité de telles informations.

Cette Fiche de Données de Sécurité n'a pas été fournie dans l'intention de dispenser les utilisateurs de s'assurer que le produit décrit convient bien à leurs fins propres et que les précautions de sécurité et les conseils d'environnement sont bien adaptées à leurs fins et à leur situation propre. En outre, il est de l'obligation de l'utilisateur d'employer ce produit prudemment et de se conformer à toutes les lois et à tous les règlements applicables à l'utilisation de ce produit.

L'entreprise ne reconnaît aucune responsabilité pour toute blessure, toute perte ou tout dommage qui résulteraient d'un manque de respect des recommandations de sécurité et d'autre nature, contenues dans cette Fiche de Données de Sécurité, ou qui résulteraient de risques inhérents à la nature du matériau ou à une utilisation anormale du matériau.

"Fiche préparée par TEXACO BELGIUM N.V.

Révisée le : 28/06/2004 Remplace la fiche du : 28/06/2004

page: 7/8 Pollux6®©

"VEUILLEZ LIRE CES INFORMATIONS AVEC SOIN AVANT D'UTILISER OU D'ELIMINER LE PRODUIT

33013 HAVOLINE XLC 50/50 (OF01)

Technologiepark - Zwijnaarde 2 B-9052 Gent / Zwijnaarde (Belgium) Tél.: +/32/9/240.73.52 Fax: +/32/9/240.73.40"

N°version: 1.05

Révisée le : 28/06/2004

Remplace la fiche du : 28/06/2004

page: 8 / 8 Pollux6®©

Date de révision: 09May2005

Page 1 de 8

FICHE DE DONNEES DE SECURITE

RUBRIQUE 1

IDENTIFICATION DU PRODUIT ET DE LA SOCIETE

Cette FDS est conforme aux réglementations françaises à la date de révision ci-dessus.

PRODUIT

Nom du produit: MOBILGEAR SHC XMP 320

Description du produit: Huiles de base et additifs synthétiques
Code de produit: 201560403020, 405413, 610535-60
Emploi prévu: Huile d'engrenages

IDENTIFICATION DE LA SOCIETE

Fournisseur: ESSO Société Anonyme Française

2, rue des Martinets F-92569 RUEIL-MALMAISON CEDEX

FRANCE

N° de téléphone en cas d'urgence (24h/24)08 1000 3353Centre anti-poison national01 4542 5959 (ORFILA)N° du fournisseur (standard)+33 1 4710 6000

RUBRIQUE 2

COMPOSITION / INFORMATION SUR LES COMPOSANTS

Substances dangereuses devant être reportées : aucune.

RUBRIQUE 3

IDENTIFICATION DES DANGERS

Ce produit n'est pas classé dangereux, au sens des directives 1999/45/CE ou 67/548/CEE (voir rubrique 15).

DANGERS POUR LA SANTE

Faible niveau de toxicité. Une exposition excessive peut conduire à une irritation respiratoire, des yeux ou de la peau. L'injection à haute pression sous la peau peut causer des lésions graves.

Remarque: Ce produit ne doit pas être utilisé pour un quelconque autre usage que celui indiqué en rubrique 1, sans l'avis d'un expert. Les études de santé ont montré que l'exposition aux produits chimiques peut présenter des risques potentiels pour la santé chez l'homme qui peuvent varier d'une personne à l'autre.

RUBRIQUE 4

MESURES DE PREMIERS SECOURS

INHALATION

Eloigner la personne touchée de la zone d'exposition. Les personnes portant assistance doivent éviter de s'exposer elles-mêmes ou d'exposer d'autres personnes. Employer une protection respiratoire adaptée. En cas d'irritation respiratoire, vertige, nausée ou perte de conscience, obtenir immédiatement une assistance

Date de révision: 09May2005

Page 2 de 8

médicale. En cas d'interruption de la respiration, employer un dispositif mécanique d'assistance respiratoire ou pratiquer le bouche-à-bouche.

CONTACT CUTANE

Si le produit est injecté dans ou sous la peau, ou dans une quelconque autre partie du corps, la personne doit immédiatement faire l'objet d'un examen chirurgical d'urgence par un médecin, quels que soient l'aspect et la taille de la lésion. Bien que les symptômes initiaux de l'injection sous pression puissent être minimes voire inexistants, un traitement chirurgical précoce, dans les heures qui suivent, peut contribuer à réduire grandement l'étendue de la lésion à terme. Laver les zones de contact à l'eau et au savon.

CONTACT AVEC LES YEUX

Rincer abondamment à l'eau. En cas d'irritation, obtenir une assistance médicale.

INGESTION

Ne nécessite normalement pas de premiers secours. Obtenir toutefois des soins médicaux en cas de malaise.

RUBRIQUE 5

MESURES DE LUTTE CONTRE L'INCENDIE

MOYENS D'EXTINCTION

Moyens d'extinction appropriés: Utiliser de l'eau pulvérisée, de la mousse, de la poudre sèche ou du dioxyde de carbone (CO2) pour éteindre les flammes.

Moyens d'extinction inappropriés: Jets d'eau directs.

LUTTE CONTRE L'INCENDIE

Instructions de lutte contre l'incendie: Evacuer la zone. Empêcher l'écoulement des produits de lutte contre l'incendie vers les circuits d'eau potable et les égoûts. Les pompiers doivent utiliser un équipement de protection standard et dans les espaces confinés un appareil respiratoire individuel (ARI). Utiliser de l'eau pulvérisée pour refroidir les surfaces exposées au feu et pour protéger le personnel.

Produits de combustion dangereux: Aldéhydes, Fumée et vapeurs, Oxydes de carbone, Sous-produits de combustion incomplète

PROPRIETES D'INFLAMMABILITE

Point d'éclair [Méthode]: 205℃ (401 °F) [ASTM D-93]

Limites d'inflammabilité (Pourcentage volumique approximatif dans l'air): LEL: 0.9 UEL: 7.0

Température d'auto-inflammation: N/D

RUBRIQUE 6

MESURES APRES FUITE OU DEVERSEMENT ACCIDENTEL

PROCEDURES DE NOTIFICATION

En cas de déversement ou de dispersion accidentelle, informer les autorités compétentes conformément aux réglementations en vigueur.

GESTION DES DEVERSEMENTS

Déversement terrestre: Stopper la fuite si cela peut se faire sans risque. Recueillir par pompage ou avec un

Date de révision: 09May2005

Page 3 de 8

absorbant adapté.

Déversement dans l'eau: Contenir immédiatement le déversement à l'aide de barrages flottants. Stopper la fuite si cela peut se faire sans risque. Avertir les autres navires. Eliminer de la surface par écrémage ou à l'aide d'absorbants appropriés. Demander conseil à un spécialiste avant d'utiliser des agents dispersants.

Les recommandations concernant les déversements terrestres et dans l'eau sont basées sur le scénario de déversement le plus probable pour ce produit ; toutefois, les conditions géographiques, le vent, la température (et dans le cas d'un déversement dans l'eau) le courant et la direction du courant ainsi que la vitesse peuvent grandement influer les actions appropriées à entreprendre. Pour cette raison, les experts locaux doivent être consultés. Note : Les réglementations locales peuvent prescrire ou limiter les actions à entreprendre.

MESURES DE PRECAUTIONS POUR L'ENVIRONNEMENT

Déversements importants : Endiguer à bonne distance du déversement en vue d'une récupération et d'une élimination ultérieures. Empêcher tout écoulement dans les cours d'eau, égoûts, sous-sols ou espaces clos.

RUBRIQUE 7

MANIPULATION ET STOCKAGE

MANIPULATION

Empêcher les petits déversements et les fuites pour éviter les glissades.

Accumulateur de charges statiques: Ce produit accumule l'électricité statique.

STOCKAGE

Ne pas entreposer dans des conteneurs ouverts ou non étiquetés.

RUBRIQUE 8

CONTROLE DE L'EXPOSITION / PROTECTION INDIVIDUELLE

Des limites/normes d'exposition pour les matériaux pouvant se former lors de la manipulation de ce produit : En cas de formation de brouillards ou d'aérosols, les valeurs suivantes sont recommandées : 1 mg/m3 - INRS/CRAM Valeur Moyenne d'Exposition (VME); 5 mg/m3 - ACGIH TLV; 10 mg/m3 - ACGIH STEL.

Note : Des renseignements sur les procédures de surveillance recommandées peuvent être obtenus auprès des agences ou instituts suivants :

RU Health and Safety Executive (HSE) Allemagne Berufsgenossenschaftliches Institut für Arbeitssicherheit (BIA) France Institut National de Recherche et de Sécurité (INRS)

MESURES D'ORDRE TECHNIQUE

Le niveau de protection et les types de contrôle nécessaires varieront selon les conditions d'exposition potentielles. Mesures de contrôle à envisager:

Aucune exigence particulière dans les conditions normales d'utilisation avec une ventilation suffisante.

PROTECTION INDIVIDUELLE

Les choix des équipements de protection individuelle dépendent des conditions d'exposition potentielles,

Date de révision: 09May2005

Page 4 de 8

notamment en fonction de l'application, des pratiques de manipulation, de la concentration et de la ventilation. Les renseignements ci-dessous relatifs au choix des équipements de protection sont basés sur l'utilisation normale prévue de ce produit.

Protection respiratoire: Si les mesures techniques ne permettent pas de maintenir les concentrations de contaminants présents dans l'air à un niveau permettant de protéger la santé des travailleurs, le port d'un appareil respiratoire agréé peut s'avérer être nécessaire. Le choix de l'appareil respiratoire, son utilisation et son entretien doivent être en conformité avec les recommandations réglementaires lorsqu' elles s' appliquent. Les différentes types d'appareils respiratoires à envisager sont:

Aucune exigence particulière dans les conditions normales d'utilisation avec une ventilation suffisante.

En présence de concentrations élevées dans l'air, utiliser un appareil respiratoire autonome agréé. Les appareils respiratoires à bouteille destinés à l'évacuation peuvent être indiqués lorsque les niveaux d'oxygène sont trop faibles, les niveaux de détection des gaz/vapeur sont bas ou si la capacité des filtres purificateurs d'air peut être dépassée.

Protection des mains: Tout renseignement spécifique sur les gants est fourni sur la base des publications existantes et des données fournies par les fabricants de gants. Les conditions de travail peuvent grandement affecter la durée maximale d'utilisation des gants ; contrôler et remplacer les gants endommagés. Les types de gants à envisager pour ce produit sont notamment:

Aucune protection n'est habituellement nécessaire dans des conditions normales d'utilisation

Protection des yeux: Lorsque le contact avec le produit est possible, le port de lunettes de sécurité à écrans latéraux est recommandé.

Protection de la peau et du corps: Tout renseignement spécifique sur les vêtements est fourni sur la base des publications existantes et des données fournies par les fabricants de vêtements. Les types de tenues à envisager pour ce produit sont notamment:

Aucune protection de la peau n'est habituellement nécessaire dans des conditions normales d'utilisation. Prendre des précautions pour éviter le contact cutané, en appliquant les bonnes pratiques d'hygiène industrielle.

Mesures d'hygiène spécifiques: Toujours adopter de bonnes pratiques d'hygiène personnelle, telles que se laver après avoir manipulé le produit et avant de manger, de boire ou de fumer. Nettoyer régulièrement la tenue de travail et l'équipement de protection pour éliminer les contaminants. Mettre au rebut les vêtements et les chaussures contaminées qui ne peuvent pas être nettoyées. Pratiquer un bon nettoyage.

MESURES D'ORDRE ENVIRONNEMENTAL

Voir rubriques 6, 7, 12, 13.

RUBRIQUE 9

PROPRIETES PHYSIQUES ET CHIMIQUES

Les propriétés physiques et chimiques typiques sont indiquées ci-dessous. Pour de plus amples informations, consulter le fournisseur indiqué en Rubrique 1.

INFORMATIONS GENERALES

Etat physique: liquide Couleur: Ambre Odeur: Caractéristique Seuil offactif: N/D

Date de révision: 09May2005

Page 5 de 8

INFORMATION IMPORTANTE CONCERNANT LA SANTE, LA SECURITE ET L'ENVIRONNEMENT

Densité (à 15.6 °C): 0.86

Point d'éclair [Méthode]: 205℃ (401℉) [ASTM D-93]

Limites d'inflammabilité (Pourcentage volumique approximatif dans l'air): LEL: 0.9 UEL: 7.0 Température d'auto-inflammation: N/D

Point d'ébulition / Intervalle: > 316°C (600°F)

Densité de vapeur (air = 1): > 2 à 101 kPa

Tension de vapeur: < 0.013 kPa (0.1 mm Hg) à 20°C

Taux d'évaporation (Acétate de n-butyle = 1): N/D pH: N/A

Log Pow (coefficient de répartition n-octanol/eau): N/D

Solubilité dans l'eau: Négligeable Viscosité: 335 cSt (335 mm²/s) à 40°C | 38.3 cSt (38.3 mm²/s) à 100°C Propriétés oxydantes: Voir les rubriques 3, 15, 16.

AUTRES INFORMATIONS

Point de congélation: N/D Point de fusion: N/A

-32℃ (-26F) Point d'écoulement:

Extrait DMSO (huile minérale seulement), IP-346: < 3 % pds

RUBRIQUE 10 STABILITE ET REACTIVITE

STABILITE: Le produit est stable dans les conditions normales.

CONDITIONS A EVITER: Chaleur excessive. Sources d'ignition de haute énergie

MATERIAUX A EVITER: Oxydants forts

PRODUITS DE DECOMPOSITION DANGEREUX: Produit ne se décomposant pas à température ambiante.

POLYMERISATION DANGEREUSE: Ne devrait pas se produire.

RUBRIQUE 11 INFORMATIONS TOXICOLOGIQUES

TOXICITE AIGUE

Voie d'exposition	Conclusion / Remarques
INHALATION	
Toxicité (Rat): CL50 > 5000 mg/m²	Faiblement toxique. Basé sur des données expérimentales relatives à des produits de structure semblable.
Irritation: Données disponibles	Des températures élevées une action mécanique peuvent produire des vapeurs, brouillards ou émanations susceptibles d'être irritants pour les yeux, le nez, la gorge ou les poumons. Basé sur l'évaluation des composants.
INGESTION	
Toxicité (Rat): DL50 > 2000 mg/kg	Faiblement toxique. Basé sur des données expérimentales relatives à des produits de structure semblable.
PEAU	
Toxicité (Lapin): DL50 > 2000 mg/kg	Faiblement toxique. Basé sur des données expérimentales relatives à des produits de structure semblable.

Date de révision: 09May2005

Page 6 de 8

Irritation (Lapin): Données disponibles	Irritation cutanée négligeable à température ambiante. Basé sur des données expérimentales relatives à des produits de structure semblable.
YEUX	
Irritation (Lapin): Données disponibles	Peut causer une gêne oculaire légère et passagère. Basé sur des données expérimentales relatives à des produits de structure semblable.

EFFETS CHRONIQUES/AUTRES

Pour le produit lui-même:

L'exposition prolongée ou répétée peut provoquer une irritation de la peau, des yeux ou des voies respiratoires.

Contient:

Huiles de base de synthèse: sur la base d'études en laboratoire sur des produits similaires, ne causent pas d'effets significatifs pour la santé dans des conditions normales d'utilisation. Non mutagène ni génotoxique. Non sensibilisant lors de tests sur animaux et humains. Huile de base fortement raffinée: Non cancérogène lors d'études sur l'animal. Le produit représentatif passe positivement le test d'Ames modifié, l'IP-346, et/ou autres tests de dépistage. Des études dermales et d'inhalation ont mis en évidence des effets minimes; une infiltration non spécifique des cellules immunitaires dans les poumons, une déposition de l'huile et une formation de granulome minime. Non sensibilisant dans les tests sur animaux.

Information complémentaire disponible sur demande.

RUBRIQUE 12

INFORMATIONS ECOLOGIQUES

Les informations fournies sont basées sur les données disponibles sur le produit, sur ses composants et sur des produits similaires.

ЕСОТОХІСПЕ

Produit -- Probablement non nocif pour les organismes aquatiques.

MOBILITE

Composant d'huile de base -- Peu soluble, flotte et va probablement migrer de l'eau vers la terre. Va se répartir entre les sédiments et la phase solide des eaux usées.

PERSISTENCE ET DEGRADABILITE

Biodégradation:

Composant d'huile de base -- Probablement intrinsèquement biodégradable.

POTENTIEL DE BIOACCUMULATION

Composant d'huile de base -- Présente un risque de bioaccumulation, toutefois métabolisme et propriétés physiques peuvent réduire la bioconcentration et limiter la biodisponibilité.

RUBRIQUE 13

CONSIDERATIONS RELATIVES A L'ELIMINATION

Les recommandations pour l'élimination concernent le produit tel qu'il est fourni. L'élimination doit se faire

Date de révision: 09May2005

Page 7 de 8

conformément aux lois et réglementations en vigueur et en fonction des caractéristiques du produit au moment de l'élimination.

CONSEILS RELATIFS A L'ELIMINATION

Ce produit peut être utilisé comme combustible dans une chaudière contrôlée, ou éliminé par incinération contrôlée à très hautes températures afin d'empêcher la formation de produits de combustion indésirables.

INFORMATIONS REGLEMENTAIRES RELATIVES A L'ELIMINATION

Code de déchet européen: 13 02 06

NOTE: ces codes sont attribués sur la base des emplois les plus courants de ce produit et peuvent ne pas prendre en compte des contaminants résultant de l'utilisation effective. Les producteurs de déchets doivent évaluer le procédé réel générant le déchet et ses contaminants de façon à assigner le code déchet adéquat.

Ce produit est classé comme déchet dangereux selon la directive 91/689/CE sur les déchets dangereux et est soumis aux clauses de cette directive à moins que l'article 1(5) ne s'applique.

Mise en garde concernant les emballages vides (le cas échéant): Les emballages vides peuvent contenir des résidus et être dangereux. NE PAS METTRE SOUS PRESSION, COUPER, SOUDER, BRASER, PERCER, MEULER NI EXPOSER CES EMBALLAGES À LA CHALLEUR, AUX FLAMMES, AUX ETINCELLES, A L'ELECTRICITE STATIQUE OU A D'AUTRES SOURCES D'IGNITION; ILS POURRAIENT EXPLOSER ET BLESSER OU TUER. Ne pas essayer de remplir ou de nettoyer car le résidu est difficile à éliminer. Les fûts vides doivent être complètement égouttés, correctement fermés et rapidement retournés chez un reconditionneur. Tous les emballages doivent être éliminés de manière à sauvegarder l'environnement et en conformité avec les réglementations en vigueur.

RUBRIQUE 14

INFORMATIONS RELATIVES AU TRANSPORT

TERRE (ADR/RID): Non réglementé pour le transport terrestre

VOIE NAVIGABLE INTERIEURE (ADNR) : Non réglementé pour le transport par voies navigables intérieures

MER (IMDG): Non réglementé pour le transport maritime selon le code IMDG

AIR (IATA): Non réglementé pour le transport aérien

RUBRIQUE 15

INFORMATIONS REGLEMENTAIRES

Ce produit n'est pas classé dangereux, au sens de la directive 99/45/CE ou 67/548/CEE (voir rubrique 15)

ETIQUETAGE UE : Non réglementé selon les directives CE.

STATUT REGLEMENTAIRE ET LOIS ET REGLEMENTATIONS APPLICABLES

Conforme aux exigences nationales/régionales suivantes en matière d'inventaire chimique: EINECS,

Date de révision: 09May2005

Page 8 de 8

TSCA

Lois et réglementations nationales:

Maladies à caractère professionnel: n°15, n°512, n°501 Maladies professionnelles: n°36, n°49, n°49 bis, n°55

RUBRIQUE 16

AUTRES INFORMATIONS

N/D = Non déterminé, N/A = Non applicable, Sans objet

LES REVISIONS SUIVANTES ONT ETE FAITES DANS CETTE FICHE DE DONNEES DE SECURITE:

Aucune information sur la révision n'est disponible.

Les informations et recommandations figurant dans ce document sont, à la connaissance d'ExxonMobil, exactes et fiables à la date de publication. Vous pouvez contacter ExxonMobil pour vous assurer que ce document est le plus récent disponible édité par ExxonMobil. Ces informations et les recommandations sont mises, pour prise en compte et examen, à la disposition de l'utilisateur. Il est de la responsabilité de celui-ci de s'assurer que le produit convient à l'utilisation qu'il en prévoit. Si l'acheteur reconditionne ce produit, il est de la responsabilité de l'utilisateur de s'assurer que les informations concernant la santé, la sécurité et les autres informations nécessaires figurent avec et/ou sur le conteneur. Les mises en garde et les procédures pour manipuler en toute sécurité doivent être fournies aux utilisateurs et manipulateurs. L'altération de ce document est strictement interdite. Sous réserve de dispositions légales statuant autrement, la republication ou la retransmission de ce document, en totalité ou partie, n'est pas permise. Le terme "ExxonMobil" est utilisé pour des raisons de commodité, et peut faire référence à une ou plusieurs sociétés, telles que

Exxon Mobil Chemical Company, Exxon Mobil Corporation ou toute société affiliée dans laquelle serait détenu un intérêt

direct ou indirect.

À usage interne seulement

MHC: 0,0,0,0,0,1

DGN: 2008998XFR (548975)

PPEC: A

MSDS Page 1 of 10

Fiche de données de sécurité

SECTION 1 IDENTIFICATION DU PRODUIT ET DE LA SOCIÉTÉ

RANDO WM 32

Utilisation du produit: Huile hydraulique

Numéro(s) produit: 001793

Identification de l'entreprise

Chevron Belgium NV

Technologiepark-Zwijnaarde 2

B-9052 Gent

Belgium

Réponse aux urgences liées au transport

Europe: 0044/(0)18 65 407333

Urgence sanitaire

Europe: 0044/(0)18 65 407333

Centre antipoison: Belgique: 0032/(0)70 245 245

Informations sur le produit

courriel: eumsds@chevron.com

Numéro de télécopieur: 0032/(0)9 240 72 22

https://cglapps.chevron.com/msdspds/MSDSDetailPage.aspx?docDataId=311014

MSDS Page 2 of 10

Centre antipoison: 0032/(0)70 245 245

SECTION 2 IDENTIFICATION DES DANGERS

CLASSIFICATION: Non classé dangereux en vertu des indications réglementaires de l'UE.

EFFETS IMMÉDIATS SUR LA SANTÉ

Oeil: N'est pas présumé causer d'irritation prolongée ou significative aux yeux.

Peau: Le contact avec la peau n'est pas présumé nocif. Informations concernant les équipements sous haute pression : Si ce produit est accidentellement injecté à grande vitesse sous la peau, il peut causer des lésions graves. Après un accident de ce type, obtenir des soins médicaux le plus rapidement possible. Immédiatement après l'accident, la blessure sur le site d'injection ne paraît pas toujours grave, mais si aucun traitement n'est administré, le membre affecté risque une déformation ou l'amputation.

Ingestion: Non présumé nocif en cas d'ingestion.

Inhalation: Non présumé nocif par inhalation. Contient de l'huile minérale à base de pétrole. Peut causer une irritation respiratoire ou d'autres effets sur les poumons après une inhalation prolongée ou répétée des brouillards en suspension dépassant les limites d'exposition admissibles pour les brouillards d'huile minérale. Les symptômes d'une irritation respiratoire sont une toux et des difficultés respiratoires.

EFFETS RETARDÉS OU AUTRES SUR LA SANTÉ: Non classé.

EFFETS SUR L'ENVIRONNEMENT: Non classé.

SECTION 3 COMPOSITION / INFORMATION SUR LES COMPOSANTS

COMPOSANTS		SYMBOLE / PHRASES DE RISQUES	QUANTITÉ
Huile minérale très raffinée (C15 - C50)	*	Aucun	75.00 - 85.00 % pondéral
distillats moyens (pétrole), hydrodésulfurés	265-183-3	R10, Xn/R65, R66	3.00 - 9.99 % pondéral

https://cglapps.chevron.com/msdspds/MSDSDetailPage.aspx?docDataId=311014

MSDS Page 3 of 10

*Contient un ou plusieurs des numéros EINECS suivants : 265-090-8, 265-091-3, 265-096-0, 265-097-6, 265-098-1, 265-101-6, 265-155-0, 265-156-6, 265-157-1, 265-158-7, 265-159-2, 265-160-8, 265-161-3, 265-166-0, 265-169-7, 265-176-5, 276-735-8, 276-736-3, 276-737-9, 276-738-4, 278-012-2. Le texte complet de toutes les phrases R figure en Section 16.

SECTION 4 MESURES DE PREMIERS SECOURS

Oeil: Aucune mesure de premiers secours particulière n'est requise. À titre préventif, enlever les verres de contact s'il y a lieu, puis rincer les yeux sous l'eau.

Peau: Aucune mesure de premiers secours particulière n'est requise. À titre préventif, enlever les chaussures et vêtements qui ont été souillés. Pour enlever ce produit de la peau, utiliser de l'eau et du savon. Mettre au rebut les chaussures et vêtements souillés ou les nettoyer avec soin avant toute réutilisation.

Ingestion: Aucune mesure de premiers secours particulière n'est requise. Ne pas faire vomir. À titre préventif, obtenir un avis médical.

Inhalation: Aucune mesure de premiers secours particulière n'est requise. En cas d'exposition à une quantité excessive de produit en suspension dans l'air, amener la victime à l'air frais. En cas de toux ou de difficultés respiratoires, obtenir des soins médicaux.

SECTION 5 MESURES DE LUTTE CONTRE L'INCENDIE

Les fuites/ruptures dans un système haute pression contenant des produits de ce type peuvent causer un incendie si elles se produisent à proximité de sources d'inflammation (flamme nue, veilleuses, étincelles, arcs électriques, etc.).

PROPRIÉTÉS D'INFLAMMABILITÉ:

Point d'éclair: (Vase ouvert Cleveland) > 150 °C (> 302 °F)

Auto-inflammation: Non disponible

Limites d'inflammabilité (d'explosivité) (% volumique dans l'air): Inférieure: Non disponible Supérieure: Non disponible

MOYENS D'EXTINCTION: Éteindre les flammes avec de l'eau pulvérisée, de la mousse, de la poudre chimique ou du dioxyde de carbone (CO2).

https://cglapps.chevron.com/msdspds/MSDSDetailPage.aspx?docDataId=311014

MSDS Page 4 of 10

PROTECTION DES POMPIERS:

Instructions de lutte contre l'incendie: Ce produit peut brûler, même s'il ne s'enflamme pas facilement. En cas d'incendie impliquant ce produit, ne pas entrer dans une zone d'incendie close ou confinée sans un équipement protecteur approprié, comprenant notamment un appareil respiratoire autonome.

Produits de combustion: Dépend fortement des conditions de combustion. Si ce produit entre en combustion, il peut dégager un mélange complexe de solides en suspension dans l'air, de liquides et de gaz, notamment du monoxyde de carbone, du dioxyde de carbone et des composés organiques non identifiés. La combustion peut produire des oxydes de : sulfure d'hydrogène, Alkylmercaptans .

SECTION 6 MESURES À PRENDRE EN CAS DE DISPERSION ACCIDENTELLE

Mesures de protection: Éliminer toutes les sources d'inflammation à proximité des substances déversées.

Gestion des déversements: Si cela peut être fait sans risque, interrompre le déversement. Endiguer le déversement de façon à empêcher une contamination accrue du sol, de l'eau de surface et des nappes souterraines. Nettoyer le déversement le plus tôt possible, en prenant les précautions figurant sous « Contrôle de l'exposition/protection individuelle ». Utiliser des techniques de nettoyage appropriées, comme le pompage ou l'application de matériaux absorbants et incombustibles. Lorsque cela est faisable et approprié, enlever la terre contaminée. Placer les produits contaminés dans des récipients jetables, puis jeter conformément à la réglementation en vigueur.

Déclaration: Signaler les déversements aux autorités compétentes, conformément à la réglementation en vigueur.

SECTION 7 MANIPULATION ET STOCKAGE

Emploi spécifique : Huile hydraulique

Renseignements généraux sur la manutention: Éviter toute contamination du sol et tout déversement de ce produit dans un système d'égouts ou de drainage, ainsi que dans une étendue d'eau.

Danger statique: Lors de la manipulation de ce produit, une charge électrostatique peut s'accumuler et engendrer une situation dangereuse. Pour minimiser ce risque, des mesures de liaison et de mise à la terre peuvent s'avérer nécessaires mais ne pas être suffisantes à elles seules. Examiner toutes les opérations susceptibles de causer la production et l'accumulation d'une charge électrostatique et/ou d'une atmosphère inflammable (notamment remplissage de cuve ou récipient, remplissage au jet, nettoyage de cuve, sondage, alternance de contenus, filtrage, mélange, agitation et utilisation de camions-citernes sous vide) et adopter des mesures d'atténuation appropriées.

Avertissements sur les récipients: Le récipient n'est pas conçu pour un contenu sous pression. Ne pas utiliser de pression pour vider le récipient car il risquerait de se rompre avec une force explosive. Les récipients vides contiennent des résidus de produit (solides, liquides et/ou vapeurs) et peuvent être dangereux. Ne pas pressuriser, couper, souder, braser, perforer, meuler ou exposer ces récipients à la chaleur, aux flammes, aux étincelles, à l'électricité statique à d'autres sources d'inflammation. Ils peuvent exploser et causer des blessures. Les fûts vides doivent être complètement vidés, correctement obturés et rapidement renvoyés à un centre de reconditionnement des fûts ou éliminés comme il se doit.

https://cglapps.chevron.com/msdspds/MSDSDetailPage.aspx?docDataId=311014

MSDS Page 5 of 10

SECTION 8 CONTRÔLE DE L'EXPOSITION / PROTECTION INDIVIDUELLE

GÉNÉRALITÉS:

Lors de la conception des mesures d'ordre technique et du choix de l'équipement de protection individuelle, tenir compte des dangers potentiels de ce produit (voir Section 3), des limites d'exposition pertinentes, des activités d'exploitation et des autres substances sur le lieu de travail. Si les mesures d'ordre technique ou les pratiques de travail ne suffisent pas à éviter l'exposition à des niveaux nocifs de ce produit, le port de l'équipement de protection individuelle indiqué ci-dessous est conseillé. L'utilisateur doit lire et comprendre toutes les instructions et restrictions fournies avec l'équipement, dans la mesure où la protection est habituellement assurée pendant une durée limitée ou dans certaines circonstances. Se reporter aux normes CEN pertinentes.

MESURES TECHNIQUES:

Utiliser dans un endroit bien ventilé.

ÉQUIPEMENT DE PROTECTION INDIVIDUELLE

Protection des yeux et du visage: Aucune protection oculaire spéciale n'est normalement requise. S'il y a des risques d'éclaboussures, il est prudent de porter des lunettes de sécurité avec protections latérales.

Protection cutanée: Aucune tenue protectrice n'est normalement requise. Lorsqu'il y a des risques d'éclaboussures, choisir une tenue protectrice adaptés aux opérations effectuées, aux exigences physiques et aux autres substances sur le lieu de travail. Les matériaux suggérés pour les gants de protection sont les suivants : Néoprène, Caoutchouc nitrile.

Protection respiratoire: Aucune protection respiratoire spéciale n'est normalement requise. Si les activités génèrent des brouillards d'huile, déterminer si les concentrations atmosphériques sont inférieures à la limite d'exposition professionnelle s'appliquant aux brouillards d'huile. Si ce n'est pas le cas, porter un appareil respiratoire homologué offrant une protection adéquate contre les concentrations mesurées de ce produit. Sur des appareils respiratoires à purification d'air, utiliser une cartouche-filtre pour particules.

Limites d'exposition professionnelle:

Composant	Pays/ Agence	TWA	STEL	Plafond	Notation
Huile minérale très raffinée (C15 - C50)	Belgique	5 mg/m3	10 mg/m3		

SECTION 9 PROPRIÉTÉS PHYSIQUES ET CHIMIQUES

https://cglapps.chevron.com/msdspds/MSDSDetailPage.aspx?docDataId=311014

MSDS Page 6 of 10

Attention: Les données ci-dessous sont des valeurs typiques et ne constituent pas une caractéristique.

Couleur: Clair à brun État physique: Liquide

Odeur: Odeur de pétrole

pH: Non disponible

Tension de vapeur: Non disponible

Densité de vapeur (air = 1): Non disponible

Point d'ébullition: Non disponible

Solubilité: Insoluble dans l'eau.

Point de congélation: Non disponible

Masse volumique: 0.9 kg/l

Viscosité: >28mm2/s

Taux d'évaporation: Non disponible

SECTION 10 STABILITÉ ET RÉACTIVITÉ

Stabilité chimique: Ce produit est considéré stable dans des conditions de température et de pression normales et celles prévues pour le stockage et la manutention.

Incompatibilité avec d'autres produits: Peut réagir au contact d'agents oxydants forts, tels que chlorates, nitrates, peroxydes, etc.

Produits de décomposition dangereux: Aucun connu (Aucun présumé)

Polymérisation dangereuse: Aucune polymérisation dangereuse ne se produit.

SECTION 11 INFORMATIONS TOXICOLOGIQUES

EFFETS IMMÉDIATS SUR LA SANTÉ

Irritation oculaire: Le risque d'irritation oculaire est basé sur l'évaluation de données disponibles sur des produits similaires ou sur les composants du produit.

https://cglapps.chevron.com/msdspds/MSDSDetailPage.aspx?docDataId=311014

MSDS Page 7 of 10

Irritation cutanée: Le risque d'irritation cutanée est basé sur l'évaluation de données disponibles sur des produits similaires ou sur les composants du produit.

Sensibilisation cutanée: Le risque de réaction cutanée est basé sur l'évaluation de données disponibles sur des produits similaires ou sur les composants du produit.

Toxicité cutanée aiguë: Le risque de toxicité aiguë par absorption cutanée est basé sur l'évaluation de données disponibles sur des produits similaires ou sur les composants du produit.

Toxicité orale aiguë: Le risque de toxicité aiguë par absorption orale est basé sur l'évaluation de données disponibles sur des produits similaires ou sur les composants du produit.

Toxicité aiguë par inhalation: Le risque de toxicité aiguë par inhalation est basé sur l'évaluation de données disponibles sur des produits similaires ou sur les composants du produit.

INFORMATIONS TOXICOLOGIQUES SUPPLÉMENTAIRES:

Conformément à la Directive 94/69/CE (21e APT de la DSD), Note L, référence IP 346/92 : « Méthode d'extraction au DMSO », nous avons déterminé que les huiles de base utilisées dans cette préparation ne sont pas cancérogènes.

SECTION 12 INFORMATIONS ÉCOLOGIQUES

ÉCOTOXICITÉ

Cette substance n'est pas présumée nocive pour les organismes aquatiques. Le produit n'a pas été testé. La déclaration a été déduite des propriétés de ses composants individuels.

MOBILITÉ

Non disponible.

PERSISTENCE ET DÉGRADABILITÉ

Cette substance n'est pas présumée facilement biodégradable. Le produit n'a pas été testé. La déclaration a été déduite des propriétés de ses composants individuels.

https://cglapps.chevron.com/msdspds/MSDSDetailPage.aspx?docDataId=311014

MSDS Page 8 of 10

POTENTIEL DE BIO-ACCUMULATION

Facteur de Bioconcentration (FBC): Non disponible.

Coefficient de Partage Octanol-Eau (Kow): Non disponible

SECTION 13 CONSIDÉRATIONS RELATIVES À L'ÉLIMINATION

Utiliser le produit conformément à son usage prévu et recycler si possible. Des services de collecte de produits pétroliers sont disponibles pour récupérer et éliminer les huiles usagées. Placer les produits contaminés dans des récipients appropriés, puis éliminer conformément à la réglementation en vigueur. Pour connaître les méthodes agréées de recyclage et d'élimination, contacter un représentant commercial ou les autorités sanitaires locales.

La codification selon le Catalogue européen des déchets (C.E.D.) est la suivante :13 01 10

SECTION 14 INFORMATIONS RELATIVES AU TRANSPORT

La description présentée peut ne pas s'appliquer à toutes les expéditions. Se reporter aux exigences supplémentaires de description (nom technique, par ex.) et aux exigences d'expédition propres au mode de transport ou à la quantité des réglementations sur les marchandises dangereuses pertinentes.

Description d'expédition ADR/RID : NON REGLEMENTE EN TANT QUE MARCHANDISE DANGEREUSE POUR LE TRANSPORT AU TITRE DE L'ADR

Description d'expédition ICAO/IATA: NON RÉGLEMENTÉ EN TANT QUE MARCHANDISE DANGEREUSE POUR LE TRANSPORT AU TITRE DE L'ICAO

Description d'expédition OMI/IMDG : NON RÉGLEMENTÉ EN TANT QUE MARCHANDISE DANGEREUSE POUR LE TRANSPORT AU TITRE DU CODE IMDG

SECTION 15 INFORMATIONS RÉGLEMENTAIRES

LISTES RÉGLEMENTAIRES RECHERCHÉES:

01=Directive UE 76/769/CEE : Limitations de la mise sur le marché et de l'emploi de certaines substances dangereuses.

https://cglapps.chevron.com/msdspds/MSDSDetailPage.aspx?docDataId=311014

MSDS Page 9 of 10

02=Directive UE 90/394/CEE: Agents cancérigènes au travail.

03=Directive UE 92/85/CEE: Travailleuses enceintes ou allaitantes.

04=Directive UE 96/82/CE (Seveso II): Article 9.

05=Directive UE 96/82/CE (Seveso II): Articles 6 et 7.

06=Directive UE 98/24/CE: Agents chimiques sur le lieu de travail.

Les composants suivants de ce produit figurent sur les listes réglementaires indiquées.

distillats moyens (pétrole), hydrodésulfurés 01, 02, 03, 06

INVENTAIRES DE PRODUITS CHIMIQUES:

Tous les composants sont conformes aux exigences suivantes en matière d'inventaire chimique : AICS (Australie), LIS (Canada), EINECS (Union européenne), IECSC (Chine), KECI (Corée), PICCS (Philippines), TSCA (États-Unis).

CLASSIFICATION - ÉTIQUETAGE:

En vertu des critères de la directive 67/548/CEE (substances dangereuses) et 1999/45/CEE (préparations dangereuses) : Non classé

SECTION 16 AUTRES INFORMATIONS

AVIS DE RÉVISION: Cette révision réactualise les sections suivantes de cette fiche de données de sécurité : 2,3,10,16

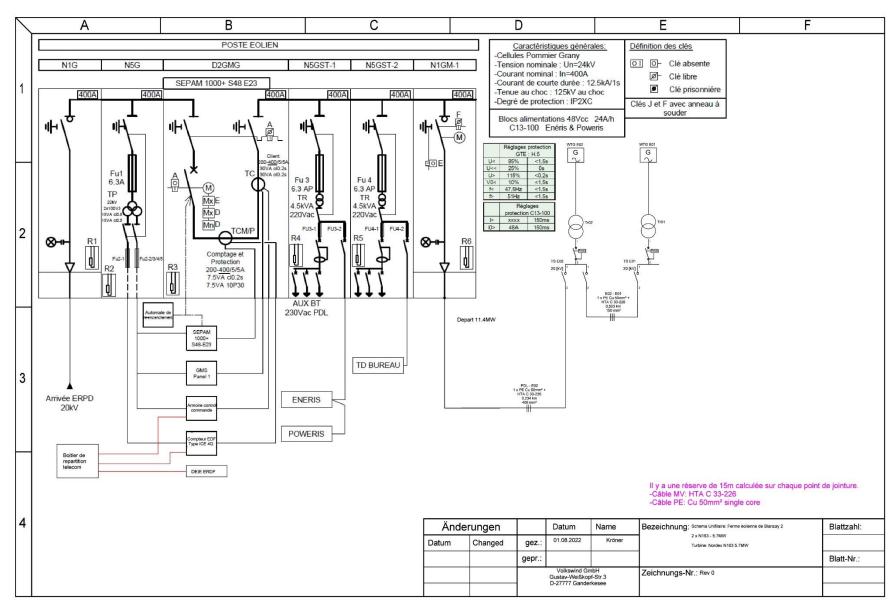
Date de révision: JANVIER 06, 2010

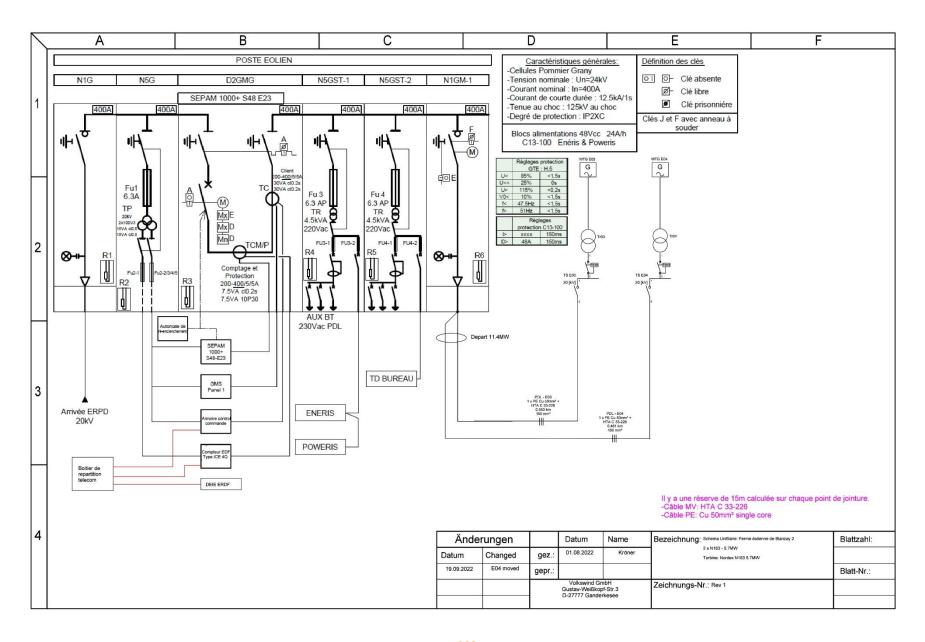
Texte intégral des phrases R :

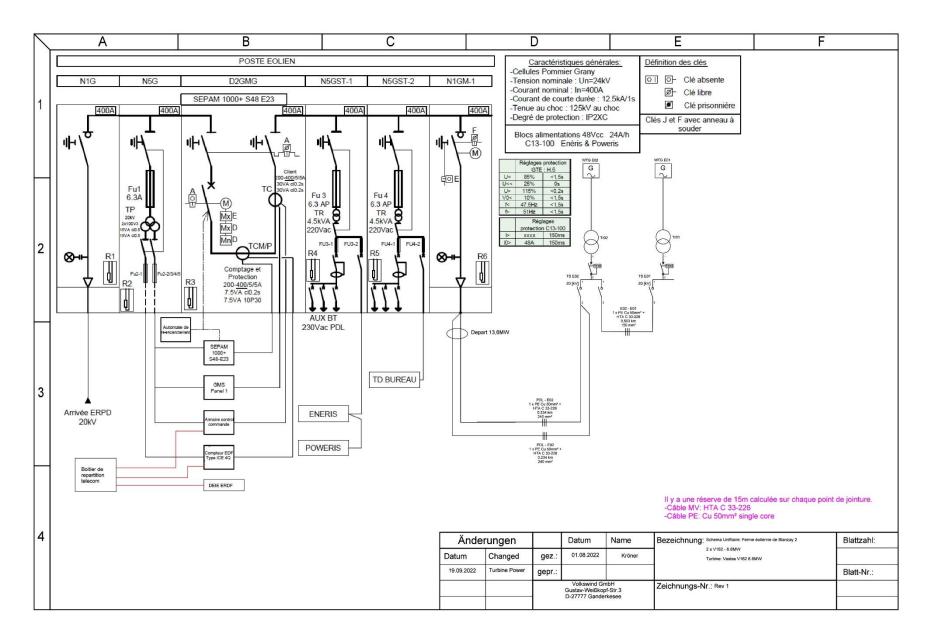
R10 ; Inflammable.

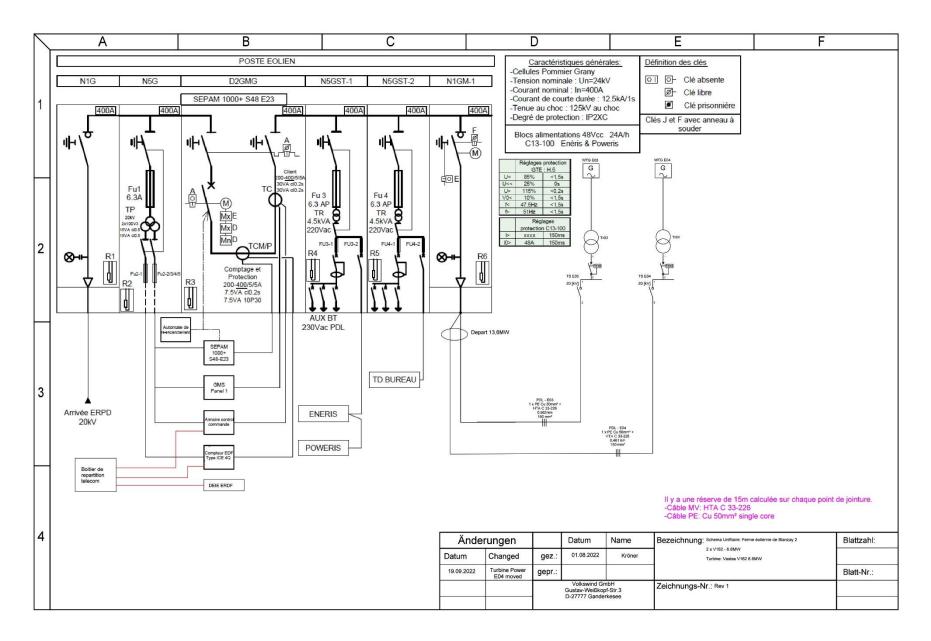
R65 ; Nocif : peut provoquer une atteinte des poumons en cas d'ingestion.

R66 ; L'exposition répétée peut provoquer dessèchement ou gerçures de la peau.


ABRÉVIATIONS SUSCEPTIBLES D'AVOIR ÉTÉ UTILISÉES DANS CE DOCUMENT:


TLV - Valeur limite d'exposition (TLV)	TWA - Moyenne pondérée dans le temps
STEL - Limite d'exposition à court terme	PEL - Limite d'exposition admissible (PEL)


https://cglapps.chevron.com/msdspds/MSDSDetailPage.aspx?docDataId=311014


MSDS	Page 10 of 10
CVX - Chevron	CAS - Numéro du Chemical Abstract Service
Préparé selon les critères de Régl Chevron Way, Richmond, California	lementation UE 1907/2006 par Chevron Energy Technology Company, 100
Chevron vvay, Richmond, California	94002.
Les informations et dessus cent ha	asées sur les données dont nous avons connaissance et sont
présumées exactes à la date de pui	blication des présentes. Attendu que ces informations peuvent être
attendu que des données apparues	ppant à notre contrôle et que nous pouvons ne pas connaître et s après les présentes peuvent suggérer des modifications de ces
informations, nous déclinons toute	responsabilité quant aux résultats de son utilisation. Ces ondition que les personnes qui en prennent connaissance déterminent
elles-mêmes si le produit convient	pour l'usage considéré.

ANNEXE 11: Schéma unifilaire

